The Good Classwork Game: A pilot study

Dipti Mudgal1, Heather E. Sterling-Turner2, & Ron P. Edwards2

1The University of Nebraska Medical Center and 2The University of Southern Mississippi

INTRODUCTION

The Good Behavior Game, first described by Barrish, Saunders, and Wolf (1969), is a type of interdependent group contingency often used for management of disruptive behavior in the classroom. It has been found to be popular, easy to implement, and widely applicable and versatile. However, as with many classroom-based behavior management techniques, the majority of research investigations have focused on decreasing disruptive behaviors. Few studies (e.g., Darch & Thorpe, 1977; Darveaux, 1984; Maloney & Hopkins 1973; Robertshaw & Hiebert, 1973; Swezy et al., 1992) have monitored classroom based interventions should be directed towards on interventions that enhancing academic performance rather than solely focusing on decreasing problem behaviors. The purpose of the current study was to extend the Good Behavior Game with a variation, the Good Classwork Game (GCG), which targeted work completion and accuracy rather than disruptive behaviors of a 2nd grade student referred for off-task behavior and poor academic performance in mathematics. Classwide effects of the game on academic were also monitored.

METHOD

Participants

- Alex: 2nd grade male with a hypothesized performance deficit in mathematics.
- Alex’s class (N=26); divided into 2 teams (n = 13).
- Classroom teacher.

Measures

Work Completion (Alex & Class)
- Percentage of problems completed on daily mathematics independent seatwork.

Work Accuracy (Alex & Class)
- Percentage of problems completed correctly.

Off-task Behavior (Alex only)
- Percentage of intervals (partial interval) with non-academic related behaviors exhibited during independent seatwork (e.g., eyes oriented away from task, playing with objects).

Design & IOA

- ABAB Simple Phase Change
- Average interscorer agreement for work completion = 97.4%.
- No IOA data were available for accuracy or off-task behavior.

Procedure

Baseline
- Recorded off-task behavior (Alex), work completion & accuracy (class wide).
- Teacher trained in intervention.
- Reinforcer menu developed with the teacher & preference assessment done with class at end of Baseline.

GCG
- Recorded off-task behavior (Alex), work completion & accuracy (class wide).
- Played GCG daily during independent math seatwork.
- Rules: Work individually and no cheating.
- Sheets scored at end of work period; points tallied for each team; reinforcer delivered to winning team(s).
- Reinforcement criterion.
- Each student on the team had to earn two points.
- One point for completing 70% of math problems.
- One point for solving 70% of math problems correctly.
- [Teacher began changing criterion for accuracy on own].
- Return to Baseline.
- Reintroduction of GCG.

RESULTS

- Moderate effects were found for work completion (Figure 1).
- Alex’s work completion increased immediately and remained stable upon introduction of the game (M = 100%) from baseline (M = 45%); however, levels did not substantially decrease when the GCG was withdrawn.
- The classes’ work completion remained relatively high and stable across all phases.
- Lower support for the GCG was found for accuracy of assignments (Figure 2).
- Alex showed immediate higher average levels of accuracy when the GCG was played (95% and 59%) than in baseline phases (95% and 85%).
- Similar patterns of behavior were observed for the entire class.
- (GCG phase averages = 87% and 82% versus baseline averages of 87% and 82%).
- Although limited, the game also appeared to decrease Alex’s off-task behavior (Figure 3).

REFERENCES

