Forensic Pathology

Dominick DiMaio, MD
Department of Pathology and Microbiology
Forensic Pathology

- Branch of medicine that applies the principles and knowledge of medical sciences to problems of field of law
- Forensic Pathologists involved with many types of deaths
 - Violent (accidents, suicides, homicide)
 - Suspicious
 - Sudden and unexpected
 - Deaths without physician in attendance
 - Deaths in an institution
 - Hospital: <24 hours
Forensic Pathology

* Major Duties
 - Cause and manner of death
 - Identify the deceased
 - Determine the time of death
 - Collect evidence from body to prove/disprove persons guilt/innocence and confirm account of death
 - Document natural disease
 - Determine contributory factors to death
 - Provide testimony if goes to trial
Forensic Pathology

- **Cause of death**
 - Injury/disease that produces physiological derangement resulting in death
 - Gunshot wound, stab, coronary atherosclerosis

- **Mechanism of death**
 - The physiological derangement produced by cause
 - Hemorrhage, septicemia, cardiac arrhythmia
Forensic Pathology

- Manner of death
 - Natural, homicide, suicide, accident, undetermined
Forensic Pathology

Coroner system
- Individual who is not a physician is elected
- Makes ruling as to cause and manner
- Not required to consult physician
- Not required to order autopsy
- Not required to agree with autopsy findings
- No training required
Forensic Pathology

Medical Examiner System

- Physician designated as “medical examiner” to determine cause and manner
- Can perform autopsies in cases that need them
- Established laboratory for use
- 60% country
Forensic Pathology

- Time of Death
 - Difficult, imprecise and often not possible
 - In virtually all cases can only give range of time (12-24 hours prior to discovery)
 - As the interval between time of death and discovery increases so does inaccuracy of estimation
Forensic Pathology

Factors Used in Estimating Time of Death

- Livor mortis
- Rigor mortis
- Body temperature
- Degree of decomposition
- Chemical changes in vitreous
- Stomach contents
- Insect activity
- Scene markers
Forensic Pathology

Livor Mortis

- Reddish purple coloration due to settling of blood by gravity in dependent areas of body
 - Occasionally misinterpreted as bruising
 - On firm surface appear pale
 - In individuals dying of cardiac death, may begin prior to death
- Onset $\frac{1}{2}$ to 2 hours after death
- Max coloration 8-12 hours
Forensic Pathology

Livor Mortis
 - “shift”
 * Intravascular collection of blood
 * Can move from one area to another
 - “fixed”
 * Blood has hemolyzed and begins to diffuse into extravascular spaces (decomposition)
 * Coloration will not move
Forensic Pathology

★ Rigor mortis
- Stiffening of the body after death due to postmortem muscle contraction
- Due to loss ATP from muscle
 - Development of a stable actin-myosin complex preventing muscle fiber relaxation
- Onset 2-4 hours after death
- Fully developed 6-12 hours
 - Jaw, upper extremities, lower ext.
 - Disappearance in same order
- Lost due to decomposition
Forensic Pathology

- **Rigor mortis**
 - Acceleration of development
 - Violent exercise (deplete ATP)
 - High body temperature
 - Temperate climates
 - persists 36-48 hours
 - Hot weather
 - Disappear less than 24 hours
 - Cold weather
 - Persist for several days
Forensic Pathology

- Body Temperature
 - Most commonly used method of “accurately” determining time of death
 - Based upon everyone having a “normal” temperature at time of death and assumption body cools at uniform rate
 - Both incorrect
Forensic Pathology

Body temperature
- In normal subjects: 96-100.8°F
- Diurnal variation
 - Low at 6 am
 - High at 4-6 pm
- Normal temperature slightly higher in women
- Strenuous exercise and chronic disease can raise temperature
Body temperature

- Body cooling not uniform
 - After death there is a plateau where cooling does not appear to occur
 - Body habitus influences cooling
 - Fat acts as insulator retarding heat loss
 - Infants cool quicker (mass/surface area)
Body temperature
- Ambient temperature and climate conditions influence rate of cooling
- How was deceased dressed
 - Clothes retard heat loss
- Surface body is lying on
 - Marble is a good heat conductor
 - Rug will insulate body
Forensic Pathology

- Postmortem vitreous potassium levels
 - Not valid
 - Levels of potassium determined by degree and rapidity of decomposition
 - Accelerate decomposition raises potassium levels
 - Time only one factor
Decomposition

- **Autolysis**
 - Aseptic breakdown of tissue caused by intracellular enzymes
 - Pancreas

- **Putrefaction**
 - Breakdown of tissue due to bacteria
 - Gastrointestinal tract main source
 - Main cause of decomposition
 - Accelerated by hot environment and sepsis
Decomposition

* Putrefaction
 - Greenish discoloration of skin in lower quadrants of abdomen
 - Green-black discoloration of face and neck
 * Swelling
 * Protrusion of eyes, tongue
 * Decomposition fluid (purge fluid) from nose and mouth
 - Reddish in color, mistaken for blood
Decomposition

- **Putrefaction**
 - Body swells due to gas formation
 - Slippage of skin with marbling and blister formation
 - Marbling is greenish black discoloration along blood vessels due to reaction of hemoglobin and hydrogen sulfide
 - Skin color changes to green then black
Decomposition

Putrefaction
- Hair will slip from scalp
- Internally brain becomes porridge like with other organs reduced to consistency of putty
- Rate of decomposition determined by environmental temperature
 - Hot climates: advanced decomposition in 24hrs
 - Moderate climates: 1-2 weeks
- Skeletonization: 1-2 weeks to months to years
Natural Disease

- If death has occurred as the result of a natural disease process in most cases the medical examiner is not involved
 - Ex. elderly person found dead at home
- Majority of natural deaths investigated involve cases where death has occurred suddenly or unexpectedly
 - Sudden unexpected death due to natural disease is uncommon between 1-30 y.o.
Natural Death

- Cardiovascular Disease
 - 300,000 to 400,000 deaths a year
 - Leading natural cause of death in men 20-65 yrs
 - In medical examiner cases may not have classic symptoms (chest pain, angina)
 - Abdominal pain/indigestion
 - Back, shoulder, neck pain
 - In cases where infarction goes unrecognized
 - Wall rupture may occur presenting as sudden death
Natural Death

- Coronary Artery Disease
 - 75% of all sudden deaths handled by medical examiners
 - 50% die suddenly
 - 25% die without any preceding history or warning
 - Mechanism of death usually lethal cardiac arrhythmia
 - Ventricular arrhythmia 80% cases
 - Sudden asystole 20%
Natural Death

Coronary Artery Disease
- Anatomic findings
 - Severe coronary artery atherosclerosis (most common)
 - Usually 2 vessels, occasionally only 1 (usually LAD or left main)
 - Stenosis greater than 75%
 - Myocardial scarring
 - Infrequent findings
 - Coronary artery thrombosis (<15%)
 - Acute/subacute myocardial infarct
Natural Disease

🌟 Hypertensive Cardiovascular Disease
 – Most cases of hypertensive cardiovascular disease accompanied by coronary artery atherosclerosis
 – Cardiomegaly usually present
 – Mechanism death
 ✨ Acute cardiac arrhythmia
 – Cardiomegaly alone can predispose to arrhythmia
Natural Disease

* Cardiomyopathy
 - Diseases characterized by myocardial dysfunction of known and unknown etiologies
 * Not due to arteriosclerosis, HTN, valvular disease, infection
 - 3 categories
 * Congestive or dilated cardiomyopathy
 * Hypertrophic cardiomyopathy
 * Restrictive cardiomyopathy
Natural Disease

- Central nervous system disorders
 - Less common than cardiovascular disease deaths
 - Most common
 - Epilepsy
 - Intracerebral hemorrhage
 - Non-traumatic subarachnoid hemorrhage
 - Meningitis
 - Undiagnosed brain tumor
Central Nervous System Disorder

- Epilepsy
 - Usually young and often found in bed
 - Complete autopsy generally negative
 - Toxicology reveals absent or sub-therapeutic levels of anticonvulsants
 - Therapeutic levels may also be present
 - Bite wounds to tongue only in 25%
 - Nonspecific, perimortem seizure activity can accompany other causes of death
 - Mechanism of death: cardiac arrhythmia
 - Gross and microscopic changes in brain are usually absent
Central Nervous System Disorder

* Intracerebral hemorrhage
 - Can lead to sudden rapid death
 - Occurs in 10-30% of all strokes
 - Hypertension most common cause (45%)
 * Basal ganglia, thalamus, pons, cerebellum and subcortical white matter
 - Other causes
 * Amyloid angiopathy, AV malformation, tumors, bleeding diathesis, drug induced, vasculitis
 - Death is due to secondary brain stem compression/herniation or intraventricular hemorrhage
Central Nervous System Disorder

✶ Cerebral infarction (ischemic stroke)
 – Less frequent cause of sudden death and therefore is seen less frequently in medical examiners office
 – Less likely to cause death in less than 24 hours before diagnosed at hospital
Central Nervous System Disorder

- Nontraumatic subarachnoid hemorrhage
 - Ruptured berry aneurysm of cerebral vasculature (#1)
 - 90% silent until rupture
 - Multiple 15-20% cases
 - 2/3 symptomatic between ages 40-60, 1/3 symptomatic earlier
 - 80-90% found on the anterior portion of the circle of Willis
 - In fatal cases: 60% die immediately, 80% <24 hours
Respiratory System

- Sudden death due to respiratory causes is relatively infrequent
 - 10% of all sudden natural deaths
- Main pulmonary disease
 - Pulmonary thromboembolus
 - Bronchial Asthma
 - Acute Epiglottitis
Respiratory System

확장형 피사체

- Usually results when lower extremity thrombus becomes dislodged and travels to heart/lungs

확장형 피사체 원인

- Blood stasis
 - Immobility, obesity, intrapelvic tumors, pregnancy
- Venous injury
- Hypercoagulable disorder
Respiratory System

 ¶ Pulmonary Thromboembolus
 – Sudden death usually from embolus in main pulmonary artery
 ¶ If 60% pulmonary vasculature blocked the heart cannot pump blood through lungs
 – Manner of death
 ¶ Mechanical obstruction (large embolus)
 ¶ Vasoconstriction due to vasospasm if multiple smaller emboli
Respiratory System

- Pulmonary Thromboembolus
 - If PE found at autopsy attempt to locate origin
 - Pelvic veins, incisions into popliteal fossae and posterior calves
 - Usually no residual thrombi found
 - Pulmonary infarcts
 - < 10% of PE cases
Respiratory System

- Bronchial Asthma
 - Chronic bronchial asthma may be associated with sudden death in a small percentage (5%) of all cases of chronic asthma
 - May occur without prolonged attack
 - Increased frequency at night or early morning
 - Triggers
 * Allergens, infection, drugs (aspirin), psychological stress, exercise, cold air
Respiratory System

- Bronchial Asthma
 - Mechanism of death
 * Reduced air flow with ventilation-perfusion mismatch resulting in decreased oxygenation of blood/ increased CO2 and right ventricular overload
 * Decreased airflow due to allergic release of histamine/vasoactive compounds from inflammatory cells causing bronchial smooth muscle contraction
 * Also have marked intrabronchial mucus secretions
Respiratory System

* Acute Epiglottitis
 - Mechanism of death
 * Marked edema of epiglottis and upper airway mucosa leading to mechanical obstruction of airway
 * Death can be very rapid
 - Occasionally precipitated by pharyngeal examination with tongue depressor
 * Most common cause: H. influenzae
 - Other bacteria: S. pneumoniae
Deaths in Association with Pregnancy

- Deaths secondary to complications of pregnancy
 - Uncommon due to better prenatal care and more aggressive medical therapy
 - In one study of 1453 pregnancy related deaths
 - 54.9% followed live birth
 - 7.7% occurred while pregnant
 - 7.1% followed stillbirth
 - 10.7% followed ectopic pregnancy
 - 5.6% followed abortion
Deaths in Association with Pregnancy

- Most common causes of death
 - Hemorrhage (#1)
 * Ectopic most common etiology
 - Embolism
 - Pregnancy induced hypertensive complications
 * Pre-eclampsia, eclampsia
 - Infection
 - In cases of death from embolism
 * PE are more common than amniotic fluid embolism
Intraoperative Deaths

• Deaths during diagnostic and/or operative procedures fall into five categories
 – Deaths due to underlying disease
 – Disruption of a vital organ during a procedure
 – Air embolism during surgery
 – Anesthetic related deaths
 – Cause of death cannot be ascertained
Intraoperative Deaths

- Deaths due to underlying disease
 - Deaths occur because of the underlying disease that necessitated the procedure
 - Not due to the procedure
 - Ex. individual put on cardiac bypass pump for coronary bypass surgery whose heart when removed from the pump does not come back
Intraoperative Deaths

- Disruption of vital organ during procedure
 - Catheters being passed into right atrium, right ventricle or pulmonary artery have perforated organ
 - Perforation of coronary artery during angiography
 - Some mechanical disruption not unexpected when realize dealing with diseased friable vessels
Intraoperative Deaths

- Air embolism during surgery
 - Most commonly in surgery of the
 - CNS, laminectomy procedure

- Anesthetic related deaths
 - Examples:
 - Intubation of esophagus, administration wrong gases, drug overdose, allergic reaction to iodine based dyes
 - Malignant hypertension
 - Halogenated anesthetics and succinylcholine
Intraoperative Deaths

Anesthetic related deaths
- Deaths due to allergic reaction are rare
- Usually straight overdose
- Most local anesthetics are cardiotoxic and thus can cause fatal arrhythmias
 - If local anesthetic (epinephrine) is injected intravascular can cause cardiac toxicity/arrhythmia

Cause of death can not be ascertained
- Negative autopsy and toxicology
- Mechanism is presumed to be cardiac but underlying process(es) in death is unknown
Blunt Force Injury

- Abrasion
- Contusion
- Laceration
- Fracture of Skeletal System
Blunt Force Injury

- **Abrasion (a scrape)**
 - Removal of superficial epidermis due to friction against rough surface

- **Contusion (bruise)**
 - Hemorrhage into soft tissue due to rupture of blood vessels caused by blunt trauma
 - Skin, lung, heart, brain, muscle
 - Hematoma- large focal collection blood
Dating of Contusions

- Histology
 - Not possible

- Color changes
 - Depth and skin pigment affect appearance
 - Superficial bruises appear yellow sooner
 - Depth and location influence time of onset
 - Superficial bruises and bruises eyelids immediate
Dating of Contusions

- Evolution in color
 - Hemoglobin degradation
 - No standard terminology
 - Violet, reddish purple, bluish purple, purple
 - Rate of color change variable
 - Person to person and bruise to bruise
Blunt Force Injury

- **Laceration**
 - Tear in tissue caused by shearing or crushing force
 - Internal organs and skin
 - Blows from blunt objects, falls, vehicle impact
 - Skin-irregular with abraded contused margins
 - Most over bony prominences
 - Explore for presence of foreign material deposited by weapon or surface
Wounds due to pointed and edged weapons

- Stab wounds
- Incised wounds
- Chop wounds
Wounds due to pointed and edged weapons

- **Stab wounds**
 - Pointed instruments
 - Depth wound tract exceeds length in skin
 - Skin edges sharp without contusion/laceration
 - Most due to single edge knives
 - “V” shaped appearance
 - Secondary tract
 - Knife twisted, victim moves as knife pulled out
Wounds due to pointed and edged weapons

- Incised wounds
 - Cuts produced by sharp edged weapons or instruments
 - Wound has clean cut straight edges without abrasion/contusion
 - Longer on skin than deep
 - Hesitation marks
 - Self inflicted incised wounds
 - Superficial
Wounds due to pointed and edged weapons

- Chop wound
 - Produced by heavy instruments with cutting edge
 - Axe, machete, meat cleaver
 - May have combination incised and lacerated characteristics
 - Combination cutting and crushing
 - Most incised appearance
Asphyxial death

- Failure of cells to receive/utilize oxygen
- Non-specific “Classic” signs
 - Visceral congestion, petechiae, cyanosis
Asphyxial death

* Petechiae
 - Pinpoint hemorrhage produced by rupture of small vessels
 - Sudden over distension/rupture vessels due to abrupt increase intravascular pressure
 * Visceral pleura, epicardium
 - Strangulation
 * Conjunctivae, sclera
 - Vomiting, coughing, acute heart failure
Asphyxial death

- Suffocation
- Strangulation
Asphyxial death

- Suffocation
 - Failure oxygen to reach blood
 - Smothering, choking, mechanical asphyxia
 - Smothering
 - Mechanical obstruction of external airways
 - Plastic bag, gags, pillows
 - Choking
 - Obstruction within air passages
Asphyxial death

- Mechanical asphyxia
 - Pressure outside body prevents respiration
 - Heavy weight presses down on chest/upper abdomen
 - Under car repairing it
 - Trapped in a restricted space resulting in restriction of ability to breath
 - Alcohol/ drugs
 - Falls down a well and is wedged between walls
Asphyxial death

- Strangulation
 - Closure of blood vessels and air passages of neck as a result of external pressure on neck
 - Hanging
 - Ligature strangulation
 - Manual strangulation
Strangulation

- In all forms the cause of death is cerebral hypoxia secondary to compression vessels supplying blood to brain
 - Carotid arteries
 - Direct pressure to front of neck
 - 11 lb pressure needed
 - Unconsciousness in 10 seconds
 - Vertebral arteries
 - Severe lateral flexion or rotation neck (hanging)
 - 66 lb pressure needed
Strangulation

• Hanging
 – Asphyxia secondary to compression or constricture of neck structures by constricting band tightened by weight of body
 – Virtually all suicides
 – Death due to compression blood vessels
 • Can also obstruct airway but not necessary
 • Rarely fracture neck
Strangulation

Hanging

- Furrow on neck
 - Does not completely encircle neck but slants upward toward knot (point of suspension)
 - Point of suspension side > back > front neck
- Face is pale
- Tongue is protruding and black
- Blood pools in dependent areas
 - Punctate hemorrhages (Tardieu spots)
Strangulation

kreśl Hanging

– Internal structures neck
 ✴ 50% no injuries
 ✴ 10-15% fracture of thyroid or hyoid bone
 ✴ 25% petechiae
 – Absence due to complete obstruction arterial system
Strangulation

Ligature
- Pressure on neck applied by constricting band that is tightened by force other than body weight
- Virtually all homicides
- Mechanism death same as hanging
Strangulation

Ligature
- No complete occlusion of vasculature
 - Blood from vertebral arteries
 - Compression venous system
- Face and neck markedly congested
- Confluent scleral/ conjunctival hem.
- 86% fine petechiae periorbital
- Ligature mark usually encircle neck in horizontal plane
- Rarely injury to internal neck structures
Strangulation

- Manual Strangulation
 - Pressure from a hand, forearm, other limb against neck compressing internal structures
 - Virtually all homicide
 - Mechanism death same
 - Occlusion airway minor role if any
Strangulation

« Manual Strangulation
 – Face congested and cyanotic
 – Petechiae conjunctivae and sclerae
 – Marks of violence
 ✳ Abrasions, contusion, fingernail marks
 – Internal neck
 ✳ Extensive musculature hemorrhage
 ✳ Fracture hyoid/ thyroid in older patients
Sudden Infant Death Syndrome

- Sudden unexpected death of an apparently healthy infant
- Less than 1 yr age
- Examination scene, review of history and complete postmortem examination fails to reveal cause of death
- Diagnosis of exclusion
SIDS

- 4-5000 deaths year in US
- Decreasing incidence
 - 1992: 1.2/1000
 - 1996: 0.74/1000
- Heterogenous group of disease processes
SIDS

- Most occur 2-4 months age
 - 92% less than 6 months
- Death below 1 month probably not due to same condition(s)
 - Inability to adapt to new environment
- While child is asleep
 - Peak midnight and breakfast
- Premature infants at greater risk
SIDS

- Males greater than females
- Race not a factor
- No known genetic etiology
- Temperature decrease - increase SIDS
- Occur in families at random
 - 1st death SIDS, 2nd undetermined, 3rd need intensive investigation
Child Homicide

- 1999: 280 children between 1-4 years murdered in US
 - Infanticide: killing of child 1st year
 - Usually parent
 - Neonaticide: killing of child within 24 hours of birth
 - Usually mother
 - Young, unmarried
 - Usually smothering
 - After few days of life
 - Perpetrators more varied
 - Death usually due to blunt trauma head/abdomen
Child homicide

- Classic battered child
 - Neglected/ starved
- Impulse or “Angry” homicide
 - Punished child
 - Most child homicides
- “Gentle” homicide (smothering)
 - Munchausen Syndrome by Proxy
Child homicide

- Battered baby syndrome
 - Repeated intentional acts of trauma to a young child inflicted at slightest provocation
 - Deprivation food/ water
 - Presents to physician with acute injury and evidence old injuries
 - Delay in bringing child to hospital
Child homicide

• Battered baby syndrome
 – Significant discrepancy between hx and clinical findings
 – Explanations of trauma vague/ inconsistent
 – Head injuries from falling out of arms, chair, bed
 – Burns: put hand in boiling water, climbed into tub, sibling
 – Starvation: “fussy eater”
 – Often severe diaper rash
 • “very tender skin”, “allergic to everything”
Child homicide

- Battered baby syndrome
 - Autopsy
 - Multiple bruises various ages
 - Pattern bruises
 - Long incisions down back, buttocks, extremities to reveal soft tissue hemorrhage
 - Most die head trauma +/- fracture
 - Retinal hemorrhage
 - Punched in abdomen
 - Liver laceration, spleen rupture, tear mesentery
Child homicide

- “Angry” or “Impulse” homicide
 - Most cases
 - Sudden violent act brought on by trivial provocation
 - Child picked up and thrown/ slammed
 - May be well cared for
Child homicide

- “Gentle” homicide
 - Smothering most commonly missed method
 - Minor force necessary therefore no evidence trauma
 - Autopsy unremarkable
 - Small percentage of SIDS (<10%)
Child homicide

- Munchausen’s Syndrome by Proxy
 - Usually mother
 - Child brought to physician for induced signs and symptoms of illnesses
 - Multiple hospital admissions
 - Extensive evaluations/procedures
 - Hypoglycemia with insulin
 - Prick finger and put blood in urine
Child homicide

- Munchausen’s Syndrome by Proxy
 - Smothers child and then resuscitates or brings to ER semi-moribund
 - Hx apnea, cyanosis, loss of consciousness
 - Continues to recur
 - Extensive negative workup
Shaken Baby Syndrome

- Retinal, subdural and/or subarachnoid hemorrhage caused by violent shaking
 - Whiplash action of child’s relatively heavy head in association with weak neck muscles
 - Immature partially membranous skull
 - Large subarachnoid space
 - Soft immature brain
Shaken Baby Syndrome

- Acceleration-deceleration traction stresses due to head whipping back and forth
- Original reports
 - Diagnosis made clinically
 - Autopsies not always performed
Shaken Baby Syndrome

- More cases
 - Injuries to scalp and skull (contusions and fractures)
 - Impact trauma
 - Biomechanical study
 - Model 1 month old infant with accelerometer
 - Can not shake hard enough
 - Amount of shaking necessary would break neck
 - No cases of syndrome with broken neck
 - Injuries due to impact of head
 - Pediatrician vs Forensics
Wound Ballistics

- Severity of wound
 - Amount of tissue shredded
 - Amount of Kinetic Energy lost by bullet in body
 - KE = \(\frac{1}{2}mv^2 \)
 - Need to transfer KE to tissue to create maximum damage
Wound Ballistics

- Bullet enters tissue
 - Imparts radial motion to tissue creating temporary cavity much larger than permanent
 - 5-10 ms
 - High velocity projectiles can cause injury far from path of bullet
 - Handgun temporary cavity not important
Handgun wounds

- Discharge gun
 - Bullet
 - Flame 1400 F
 - Gas
 - Soot
 - Powder: burning and unburnt
 - Metal vaporized from bullet and jacket
 - Primer compounds
 - Copper and nickel vaporized from cartridge case
Distance

- Contact
- Near contact
- Intermediate
- Distant
Type of wounds

- **Contact**
 - Muzzle is in contact with body
 - There is
 - Scorching of the wound edges
 - Soot deposited on wound margin
 - Soot driven into wound tract
 - There May be
 - Muzzle impression
 - Soot on skin adjacent to wound
Type of wounds

- **Contact**
 - Over bone
 - Stellate entrance wound
 - Soot deposited around bone entrance
 - Soot may be deposited on inner surface of skull
 - Clothing may absorb soot and powder
 - Soot still inside wound tract
Type of Wounds

Near Contact
- Transition between contact and intermediate
- Entrance surrounded by wide band of seared blackened skin
Type of Wounds

Intermediate
– “powder tattooing”
 – Punctate abrasions of skin due to impact of unburnt and burning grains of powder in skin
 – Not burns
 – Range depends on gunpowder, barrel length, caliber
 – Size and density powder tattoo can determine range
Type of Wounds

- Intermediate
 - Soot present up to 12 inches for handguns
 - Can wipe off, not powder tattooing
 - Tattooing for handguns
 - Flake powder: 2 feet
 - Flattened ball: 3 feet
 - Ball powder: 4 feet
Type of Wounds

- Distant
 - No soot or tattooing
 - Cannot determine exact range
 - Entrance wound
 - Abrasion ring
 - Small, circular or oval, regular (except for contact over bone)
 - Can not tell caliber by entrance wound
Type of Wounds

- Exit wounds
 - Larger and more irregular than entrance
 - Bullet tumbling
 - Bullet deformation
 - No abrasion ring
Type of Wounds

• Bullet wound of skull
 – Entrance
 • Punched out with sharp edges
 • Opposite surface beveled
 – Exit
 • Beveled or cratered outward
High Velocity Rifle Wounds

- Higher velocity
 - More kinetic energy = more wounding
- External injuries to torso appear no different from handgun
 - Severe internal injury
 - Temporary cavity may fracture bone, injure vessels and organs far from bullet
High Velocity Rifle
Wounds

amous same wound characteristics
– Entrance may lack abrasion ring
 “micro-tears”
– Tattooing
 Cylindrical powder: 1 ½ feet
 Ball powder: 3 feet
– Soft point hunting bullets
 Shed lead as go through body
 “lead snowstorm”
Suicides

♀ Facts about suicides by guns
 – 5-6% right handed individuals shoot themselves with left hand
 – Multiple bullet wounds do not rule out suicide
 ♀ Woman 9 times in chest
 ♀ Man 5 times in head
 – Fatal “accidental” shooting while “cleaning” gun usually suicide
Suicides

- Facts about suicides by guns
 - Suicide notes present only 25% cases
 - Backsplatter of blood on firing hand occurs about 33-35%
 - Gun found clutched in hand in 20% long arms and 25% handguns
 - Occasionally individuals shoot themselves in back of head
Shotgun wounds

- Entrance wounds
 - Contact to 12 inches
 - Single round entrance ¾ to 1 inch diameter
 - Abrasion ring
 - Powder tattooing
 - Less dense than pistol
 - Ball powder: 3 feet
 - Flake powder: 2-2 ½ feet
Shotgun wounds

- Entrance
 - 12 inches to 3 feet
 - Circular wound with scalloped margins
 - 4 feet
 - Large central scalloped entrance
 - Few satellite pellet holes
 - Beyond 10-12 feet great variation in spread
Shotgun wounds

- The Wad
 - Either paper or plastic
 - Lies between shot pellet and powder
 - Close range
 - Propelled into body
 - Between 1-3 feet petal marking
 - Beyond 10 feet wad not enter
Shotgun wounds

Range determination

- Duplicating on paper the size of the shotgun pattern described at autopsy
 - Must use same weapon and ammunition
 - Range formulas do not work
- Size shot pattern dependent on range, choke of gun and type of ammunition