Objectives

- Discuss direct agglutination as a means of *in vitro* detection of antigens and antibodies.
- List acceptable specimens for blood type determinations.
- Explain the principle of ABO and Rh testing.
- Explain the principle of the weak D test.
- Describe the reagents used in routine ABO grouping and Rh typing.
- Discuss quality control requirements for ABO and Rh reagents.

More objectives

- Discuss tube, microtiter well and gel test platforms.
- Evaluate/ Grade ABO and Rh reactions using conventional reagents.
- Interpret ABO and Rh results when given a set of reactions.

Visualizing the Reaction

- **Agglutination**
 - Formation of lattice as antibody binds to antigens on neighboring RBCs.

- **Hemolysis**

Agglutination

Hemolysis
Detection of Antigens
- Antigens found on RBCs
- Anti-serum = Reagent containing the corresponding antibody

Detection of Antibodies
- Antibodies found in plasma or serum
- Reagent = RBCs known to possess the corresponding antigen

Direct Agglutination

Testing Phases
- IS = Immediate Spin – no incubation period prior to centrifugation; reactants usually at room temperature
- 37°C incubation = reactants brought to 36-38°C for a period of time prior to centrifugation
Direct Agglutination – Microtiter Plate

The Blood Type
- ABO group
- Rh type
- ABO and Rh tests are almost always performed simultaneously
 - Two separate procedures, as these are two separate blood group systems
 - Procedures are very similar

ABO Testing
Test for both antigens on Red Blood Cells (forward grouping) and Antibodies in plasma (reverse grouping)

Specimen
- EDTA – most common
- Clot tube
- Centrifuged to separate plasma from RBCs

Reagents: Anti-serum
- Contains known antibodies
- Used to detect antigen on RBCs
 - Forward Grouping
 - Front type
- Routinely use anti-A and anti-B
- May be monoclonal or "conventional"

Polyclonal Vs. Monoclonal
- Polyclonal reagents = conventional reagents
- Produced by immunizing donors, then collecting the sera containing antibody.
- Contains antibodies against multiple epitopes.
- Monoclonal reagents most frequently used.
- Hybridoma technology used to create a single antibody that is directed against just one epitope.
Monoclonal Advantages
- No lot to lot variation in reactivity
- High titers of antibody
- High specificity
- High sensitivity
- Reduced risk of infectious disease

Monoclonal Disadvantage
- Antibody is directed against only one epitope, so may get false negative results if patient has an abnormal antigen missing that particular epitope
 - To avoid this, many monoclonal reagents are a blend of several different monoclonal antibodies or a blend of monoclonal and polyclonal antibodies

Reagent: Red Blood Cells
- 2-5% suspension of RBCs in a preservative solution
- Known antigen
- Used to detect antibodies in plasma/serum
 - Reverse grouping
 - Back type
- Routine use of A, and B cells
 - Rh Negative to avoid detection of Anti-D in plasma

Reagent Quality Control
- A and B RBC reagents are tested against anti-A and anti-B anti-sera daily
 - The A cells should only react with anti-A while the B cells should only react with anti-B
 - Usually expect a strong (4+) reaction with monoclonal reagents
- Includes a visual inspection of the reagents looking for signs of bacterial contamination or improper storage
- Check expiration dates
 - Reagents may be used until the outdate printed on the vial.

ABO Grouping Tube / Microtiter well
- Testing performed at "immediate spin" phase
 - Reaction takes place at room temperature
 - Does not require incubation
 - Direct agglutination
- Forward and reverse grouping serve as a check on each other
 - Performed at same time

Forward Grouping
- Centrifuge at 3500 rpm. Read, grade, record.
Introduction to Clinical Immunohematology

Blood Type Determinations

Forward Grouping – Cellular Level

- Anti-A
- Anti-B

Reverse Grouping

- Centrifuge at 3500 rpm.
- Read, grade, record.

Reverse Grouping – Cellular Level

- A₁ Cells
- B Cells

Interpretation

- Interpret both the forward and reverse grouping results to determine ABO group
 - Should be in agreement
 - If not, investigate discrepancies

ABO / Rh - Tube

ABO/Rh Typing – Microtiter wells
ABO/Rh Typing - Gel Method
(Microcolumn Agglutination)

Gel Method

Gel Method – Adding reactants

Gel - Centrifugation

Reading Reactions in Gel

ABO/Rh Typing - Gel Method

Reagent layer
Dextran acrylamide gel

Reaction chamber
Routine ABO Testing

<table>
<thead>
<tr>
<th>Reagent Anti-A</th>
<th>Anti-B</th>
<th>A Cells</th>
<th>B Cells</th>
<th>Interp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>O</td>
</tr>
<tr>
<td>++</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>+</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>AB</td>
</tr>
</tbody>
</table>

Note!

- Testing for the Rh(D) antigen is usually included with ABO forward grouping.
- Together, the ABO and Rh make up what is commonly referred to as the “blood type.”

Rh Typing

D Typing Sera

- Routine testing is for D antigen only.
- Anti-serum contains antibodies to multiple D epitopes.
- Designed to react at immediate spin phase of testing.
- Low protein reagent most commonly used.

Anti-D Daily QC

- Anti-D is tested daily against known Rh Positive RBCs to verify reactivity – Usually expect 3 – 4+ reactions.
- Anti-D may be tested daily against known Rh Negative cells to verify specificity.
- Includes a visual inspection of the reagent and check of expiration date.

Routine Testing - D Tube Method

- Centrifuge at 3500 rpm.
- Read, grade, record.

ID

2 - 5% RBCs in saline
Negative Controls for anti-D

- A negative control may be tested in parallel to validate the results with anti-D. This is necessary when:
 - A high protein anti-D reagent is used.
 - The RBCs being tested react with a low protein anti-D reagent along with both anti-A and anti-B.
- The RBCs are tested using an inert reagent in place of the anti-D reagent.
- Reagents that may be used as a negative control include:
 - Rh-hr control
 - 6% Bovine Serum Albumin (BSA)

For example…

When using a low protein monoclonal anti-D

Weak D Test

- Anti-D reagent + 1 drop of 2-5% suspension of individual’s RBCs
- Incubate at 37°C for 15 to 30 minutes
- Wash with saline (x3) to remove unbound antibody
- Add 2 drops of AHG reagent
- Centrifuge, then read for agglutination

Weak D Control

- If the weak D test is positive, a control must be tested. A negative control establishes the validity of a positive weak D test.
- Repeat the weak D test, substituting one of these inert materials for the anti-D reagent:
 - Rh-hr control
 - 6% BSA
- Perform a Direct Antiglobulin Test on the patient’s RBCs
 - Detects RBCs that were coated with antibodies in vivo
Weak D Controls

- Control must be negative in order for the positive Weak D test to be considered valid

Weak D Test – Rh Negative

Rh Testing in Gel

Weak D Testing in Gel

Other Rh Typing Sera

- Follow manufacturer’s instructions for use
- Controls: Test against an antigen positive cell and an antigen negative cell each day of use.

Interpreting the Blood Type

MLS 411 Introduction to Clinical Immunohematology

Blood Type Determinations
Grade and Record the Reactions
Then Interpret the Results

Interpretation:
B Rh Positive
(B Rh Pos or B+)

ABO/Rh Typing – Tube

The End