The ABO System

Objectives
- Discuss the significance of the ABO system in transfusion medicine
- Discuss the discovery of the ABO system
- State the frequency of the ABO groups in Black and White populations
- Explain the inheritance of the A, B and H genes
- Predict all the possible genotypes of children, given the ABO phenotype of the parents

More Objectives
- Outline the development of A, B, and H antigens including the specific transferases and terminal sugars
- State the comparative concentrations of H substance in each ABO phenotype
- Apply Landsteiner’s Law to antibody formation
- Describe the reciprocal relationship between ABO antigens and antibodies
- Evaluate characteristics of ABO antibodies

Clinical Importance

THE
MOST IMPORTANT
BLOOD GROUP
SYSTEM IN
TRANSFUSION
MEDICINE!!!!!

Antibodies directed against ABO antigens are:
- Consistently & predictably present
- Not stimulated by exposure to red blood cells
- Able to activate complement, leading to intravascular lysis of RBCs
- Transfusion of ABO mismatched RBCs causes severe, acute hemolytic transfusion reactions

<table>
<thead>
<tr>
<th></th>
<th>Group A serum</th>
<th>Group B serum</th>
<th>Group O serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A cells</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Group B cells</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Group O cells</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Discovery
- Karl Landsteiner – 1901
ABO Antigens and Antibodies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>O</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Blood Group Distribution (%)

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Mexican</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>45</td>
<td>49</td>
<td>56</td>
<td>43</td>
</tr>
<tr>
<td>A</td>
<td>40</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>20</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

3 Main Antigens

- A
- B
- H

3 Genes Control Antigen Expression

- Hh
- ABO
- Se/se (secretor)

Inheritance - Hh

- Controls expression of H antigen
 - Chromosome 19
 - H is dominant; h is recessive
 - Inheritance of hh = Bombay phenotype (Oh)
- A and B antigens can only be produced if the H antigen is present first.

Inheritance - ABO

- Chromosome 9
- A and B genes inherited codominantly
- O gene recessive
 - Amorph
 - H antigen expressed on RBCs
Determining Genotypes
- My father was Group O
- My mother was Group B
- What are the possible ABO genotypes for my sisters and I?

<table>
<thead>
<tr>
<th>Dad</th>
<th>Mom</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

Determining Genotypes
- Possible genotypes of offspring
 - BO
 - OO
- Possible phenotypes of offspring
 - B
 - O
- Can we tell which genotype a person has when we know the phenotype?

Inheritance Se se
- Secretor gene
- Controls expression of H antigen in body fluids
 - Chromosome 19
 - Se dominant over se
 - Closely linked to Hh gene
- 80% of population are "secretors"

Genes code for enzymes
- ABH genes code for transferases, not antigen
- These enzymes add sugar to a precursor substance
 - H gene = L-fucosyl transferase; adds fucose to precursor molecule
 - A gene = N-acetylgalactosaminyl transferase; adds N-acetylgalactosamine to H
 - B gene = D-galactosyl transferase; adds D-galactose to H
 - O gene = amorph (no sugar added)

ABO Genetic Pathway – Group O
- Precursor substance (paragloboside) → H antigen (Group O)
- Fucose

ABO Genetic Pathway – Group A
- Precursor substance (paragloboside) → H antigen (Group A)
- N-acetylgalactosamine

MLS 411 Introduction to Clinical Immunohematology
ABO System
Antigen Characteristics

- Found throughout the body
 - On cell membranes - glycolipids, glycosphingolipids or glycoproteins
 - In body fluids - glycoproteins
- Not fully developed until 2 – 4 years old

H Antigen

- All RBCs have some H antigen
- In order from most H to least H:
 - O
 - B
 - A
 - AB
- O_0 is the exception - no H antigen produced

Antibodies of the ABO System

Aka isohemagglutinins

Landsteiner’s Law

An antibody will not develop in an individual’s plasma unless the corresponding antigen is absent from the red blood cells.
Antibodies

• Naturally occurring
• Normal finding in the plasma of Group A, B and O individuals
• Not present at birth; detectable at 3 - 6 months
• IgM
 – Small amount of IgG in Groups A and B
 – Group O individuals have predominantly IgG
• React best at room temperature or colder but have a wide thermal amplitude

More about ABO Antibodies

• Able to activate complement (intravascular hemolysis)
• May weaken with age and in certain disease states

Name That Antibody!

• Group A
• Group B
• Group AB
• Group O

• Anti-B
• Anti-A
• No ABO antibodies
• Anti-A, Anti-B, Anti-AB

Clinically Significant? Yes

• Hemolytic Transfusion Reactions (HTR)
 – ABO incompatible RBCs transfused
 – Recipient’s ABO antibodies recognize and react with donor RBCs
 – Complement activated which leads to intravascular lysis of donor RBCs

• Hemolytic Disease of the Fetus and Newborn (HDFN)
 – Group O mothers have IgG form of anti-A, anti-B and anti-AB
 – Antibodies cross placenta and attack RBCs of A or B infants
 – Antibody-coated RBCs are cleared by mononuclear phagocytic system in infant

The End

STRETCH