Staphylococcus

Student Lab Day 3
Division of Laboratory Sciences
Michele Jurgensmeier MT(ASCP) SM

Gram Positive Cocci

General Information
- Cause human infections
- Recover from various clinical specimens
- Found in many places
- Spread by direct contact
 - Skin and mucous membranes penetration
- Elaborate an inflammatory response
- Produce pathogenic effects

Staphylococcus species

General information
- Normal flora of skin and mucous membranes
- Most are facultative anaerobes
- Growth on nutrient media containing peptone
- Inhibited by crystal violet or high concentrations of bile salts
- Fast growing
- Non-motile and non-spore forming

Identification of Staphylococcus and other related species

Colony morphology
- Important role in clinical laboratory
- Trained microbiologist can differentiate pathogens from non-pathogens
- Economize lab testing

Staphylococcus species

General information
- Common human pathogens:
 - Staphylococcus aureus
 - Staphylococcus epidermidis
 - Staphylococcus saprophyticus
 - Staphylococcus lugdunensis

Staphylococcus species

Growth Characteristics
- Colony morphology
 - Opaque, smooth, circular
 - Gray-white, white, cream, yellow (golden)
 - Hemolysis
 - S. aureus beta-hemolytic
Staphylococcus and other related species

- Growth characteristics
 - Growth on sheep blood and chocolate agar
 - No growth on MacConkey agar

Catalase test
- Clean glass slide
- Colony on slide
- 3% H2O2 placed on colony
- Positive test shows rapid production of bubbles
- Negative test will show no production of bubbles
- Commonly used to differentiate Gram + bacteria

Staphylococcus species

Identification methods
- Slide coagulase
- Tube coagulase
- Latex agglutination
- Automated and rapid multi-test systems
- Novobiocin
- Dnase
- Molecular methods

Slide Coagulase
- Detects clumping factor
- Directly coverts fibrinogen to fibrin
- Organism mixed with plasma
- Positive test shows agglutination
 - Indicates *Staphylococcus aureus*
- Negative results confirmed
Staphylococcus species

Tube Coagulase
- Detects staphylocoagulase which reacts with CRF, a thrombin-like molecule
- Indirectly converts fibrinogen to fibrin
- Organism suspended in plasma and incubated
- Read at 4 hrs
- Positive clot formation
 - Indicates *Staph aureus*
- Negative results confirmed

Staphylococcus species

Latex agglutination
- Various rapid kits available
- Utilize plasma-coated carrier particle
 - Usually latex
- Plasma detects clumping factor
- IgG detects Protein A
- High specificity/sensitivity
- Commonly used in clinical laboratories

Staphylococcus species

Novobiocin susceptibility
- Coagulase negative staph identification
 - Performed on urine isolates
 - Multi-test systems
- Lawn of growth prepared
- Disk place on inoculum and incubated
- Zone sizes measured

Staphylococcus species

PYR hydrolysis
- Hydrolysis of L-pyrrolidonyl-alpha-naphthylamide with formation of the free B-naphthlamide, which combines with DMAC to form a bright red color
 - *Staphylococcus aureus* is PYR negative
 - *Staphylococcus lugdunensis* is PYR positive
 - Other species will vary in their reaction

Staphylococcus species

Rapid Ornithine decarboxylase
- Modified conventional moeller ornithine can be read at 2 to 4 hours
 - Positive reaction – development of a dark purple to violet color
 - Negative reaction – no development of color (remains pale yellow to light grayish purple or development of yellow color)
 - *Staphylococcus lugdunensis* is positive for rapid ornithine
 - Other Staphylococcal species are all negative except some rare strains of *Staphylococcus epidermidis*

Staphylococcus species

Polymyxin susceptibility
- Used to identify *Staphylococcus lugdunensis*
- Determines resistance to polymyxin B
- Useful to identify clinically significant *Staphylococcus* species
- Lawn of growth prepared
- Disk place on inoculum and incubated
- Zone sizes measured
 - Resistant (< 10 mm)
 - Sensitive (≥ 10 mm)
Staphylococcus species

Other identification tests

- Automated and rapid multi-test systems
 - Vary in accuracy for identification
 - Most systems identify the common pathogens accurately
 - *S. aureus*
 - *S. epidermidis*
 - *S. saprophyticus*

Staphylococcus aureus

Confirmatory tests

- DNase
 - Used in conjunction with other tests
- PYR tests
- Automated or rapid multi-test systems
- Molecular methods

Staphylococcus and other related species

- Tests to differentiate the Genus Micrococcus from the Genus Staphylococcus
 - Modified oxidase (Microdase)
 - Glucose fermentation
 - Bacitracin susceptibility

Modified Oxidase Test

- Tetramethyl-p-phenylenediamine dihydrochloride in dimethyl sulfoxide (DMSO)
- Blue-purple color with 30 seconds is positive test

Glucose utilization test

- Glucose/dextrose reagent with pH indicator
- Prolonged incubation
- Left to right: glucose non-utilizers, glucose oxidizer, and glucose fermenters

Bacitracin susceptibility

- Bacitracin Resistant
 - Growth up to the edge of the disk
- Bacitracin Sensitive
 - Zone size ≥ 10 mm around disk

Photos courtesy of WEB CLS
Staphylococcus aureus

General information
- Most clinically significant *Staphylococcus* species
- Recovered from almost any clinical specimen
- Mild and life threatening disease
- Nosocomial infections
- Colony morphology important diagnostic tool

Colony morphology
- Opaque, smooth
- Raised colony with smooth border
- White-gold (cream) in color
- Beta hemolytic

Biochemical Characteristics
- Catalase +
- Coagulase +
- Mannitol +
- DNase +
- Glucose fermenter
- Modified oxidase -
- Bacitracin resistant

Mechanisms of Pathogenicity
- Capsule
- Clumping factor
- Enzymes
 - Catalase
 - Coagulate
 - Fibrinolysin
 - Hyaluronidase
 - Beta-lactamase
 - DNase
- Toxins
 - Hemolysin
 - Exfoliative
 - Panton-Valentine Leukocidin
 - Enterotoxins
 - TSST-1
- Protein A

Clinical Significance
- Normal flora of various skin and mucous membranes
- Invasive organism
- Infections are suppurative
- Mild and life threatening infections
Staphylococcus aureus

Clinical Significance
- Surface and skin infections
 - Folliculitis
 - Boils (furuncles)
 - Carbuncles
 - Impetigo

Clinical Significance
- Toxin Mediated Disease
 - Scalded Skin Syndrome
 - Toxic Shock Syndrome
 - Food poisoning

Clinical Significance
- Other infections
 - Pneumonia
 - Pseudomembraneous enterocolitis
 - Wound infections
 - Endocarditis/myocarditis
 - Bacteremia/septicemia
 - Osteomyelitis
 - Septic arthritis
 - Nosocomial infections

Antibiotic Therapy
- Susceptibility routinely performed
 - Concerned with resistance
- Organism can produce penicillinase (beta-lactamase)
- Antibiotics sensitive to penicillinase enzyme
 - Methicillin
 - Oxacillin (used to test for that class of drugs)
 - Nafcillin

Methicillin Resistant S. aureus
- Resistance encoded by mecA gene
 - Alters penicillin binding proteins
- **Routine susceptibility testing will not detect resistance**
Staphylococcus aureus

Methicillin Resistant S. aureus

- Heteroresistant "S" & "R" strains coexist
 - mecA gene
- "R" strains grow more slowly
- Growth requirements:
 - Media with neutral pH
 - Cooler temperature (30-35° C)
 - 2-4% NaCl

Methicillin Resistant S. aureus

- Modification of routine susceptibility testing
 - Inoculum from direct method
 - Incubated at cooler temperatures
 - Media with neutral pH
 - Test held for 24 hours
 - Supplement media with 2% NaCl

Staphylococcus aureus

Other methods to detect MRSA

- Detect mecA gene and new PBP2a
 - Latex agglutination
 - Detects PBP2a penicillin binding protein
 - Confirms MRSA
 - Nucleic acid probes or PCR amplification
 - Detects mecA gene
 - Gold standard for MRSA detection
 - Cefoxitin disk
 - Induces greater expression of mecA gene for detection of methicillin resistance

Mannitol Salt Agar

- Selective and differential primary culture media
- Used to isolate from mixed flora
- High concentration of salts inhibit other organisms
- Mannitol is sole carbohydrate

CHROMagar/Spectra agar

- Selective and differential primary culture media
- Incorporates chromogenic substrates
- Selective agents to inhibit other organisms
- CHROMagar incorporates cefoxitin in the media

Oxacillin Screen Agar

- Mueller-Hinton agar with 4% NaCl and 6 ug Oxacillin
- Used to screen for Methicillin (Oxacillin) resistance
- Useful in screening patients/health care workers for carriers
Coagulase Negative *Staphylococcus*

Clinical Significance
- Normal flora of skin and mucous membranes
- Increasingly associated with infection
 - Prosthetic devices
 - Intravascular catheters
 - Prolonged surgical procedures
 - Immunosuppressed/immunocompromised
- Primarily hospital acquired
- *Staph. epidermidis* is the most frequently isolated coagulase negative staph

Colony morphology
- Opaque
- Smooth, raised
- Gray- white in color
- Non-hemolytic

Staphylococcus epidermidis

Biochemical Characteristics
- Coagulase -
- Mannitol -
- DNase –
- Novobiocin “S”

Mechanisms of Pathogenicity
- Capsule
- Extracellular slime substance
 - Inhibit immune functions
 - Produce biofilm
- Remove foreign body to provide cure

Common infections
- Subacute bacterial endocarditis
- Meningitis
- Bacteremia / Septicemia
- Wound infections
- Urinary tract infections
- Peritonitis
- Post-operative infections

Culture interpretation
- Normal skin flora
 - Common contaminant
 - Wound or Blood cultures
 - Improper collection techniques
- Correlate with other culture and laboratory findings
Staphylococcus epidermidis

Antibiotic Therapy
- More resistant than *Staph aureus*
- Susceptibility testing done if presumed pathogen
- Drugs of choice
 - Methicillin
 - Vancomycin (if methicillin “R”)

Staphylococcus saprophyticus

Biochemical Characteristics
- Coagulase -
- Mannitol variable
- DNase –
- Novobiocin “R” (<16 mm)

Staphylococcus saprophyticus

Clinical Significance
- Urinary tract infections
 - Cystitis in young women
 - Frequency - 2nd to *E. coli*

Staphylococcus saprophyticus

Antibiotic Therapy
- Susceptibility testing not routinely done
- Lack correlation between *in vitro* and *in vivo* response
- Drugs of choice
 - Nitrofurantoin
 - Trimethoprim/sulfamethoxazole
 - Fluoroquinolone

Staphylococcus lugdunensis

Biochemical Characteristics
- Latex agglutination +
 - Positive but clumpy
- Tube Coagulase –
- Novobiocin “S”
- PYR +
- ODC +
- Rapid Ornithine →

Staphylococcus lugdunensis

General Info
- *Staph lugdunensis*
 - PYR positive versus *S. aureus* would be negative
 - ODC positive versus other coag neg staph would be negative
Staphylococcus lugdunensis

Clinical Significance
- Endocarditis, septicemia, meningitis, skin and soft tissue infections, urinary tract infections and septic shock
 - Particularly aggressive endocarditis
 - Often requiring valve replacement

Staphylococcus lugdunensis

Clinical Significance
- Susceptibility testing
 - Susceptibility breakpoints for *Staph. lugdunensis* differ from other Coag neg staph
 - *Staph. lugdunensis* uses same breakpoints as *Staph. aureus* for oxacillin
 - Important to identify to the species level for accurate antimicrobial susceptibilities
 - May possess mecA gene

Micrococcus species

General information
- Normal flora of skin and mucous membranes
- Obligate aerobe
- May possess carotenoid pigments
- Non-motile and non-sporeforming

Micrococcus species

Gram Stain
- Large GPC in pairs, tetrads or masses

Micrococcus species

Identification
- Colony morphology
 - Smooth, raised, opaque
 - White, bright yellow, or pink

Micrococcus species

Biochemical Characteristics
- Tests used to differentiate from *Staphylococcus* species
 - Glucose oxidizer
 - Modified oxidase +
 - Bacitracin sensitive

Photo courtesy of WEB CLS
Micrococcus species

Clinical Significance
- Rarely produces disease
- Normal flora
- Opportunistic infection
 - Immunocompromised

Micrococcus species

Antibiotic Therapy
- Test methods and therapeutic guidelines do not exist
- Susceptible to most beta-lactam antimicrobials

Micrococcus

Staphylococcus species

- Gram positive cocci
- Catalase = Positive
- Bacitracin = Sensitive
- Mod. Oxidase = Pos
- Glucose Oxidizer
- Gram Positive cocci
- Catalase = Positive
- Bacitracin = Resistant
- Mod. Oxidase = Neg
- Glucose Fermenter

In review…….

General Information
- Colony morphology very important
 - Gives us clues for testing needed
- First step in identification
 - Catalase test

Key points quiz…….

Day 4

<table>
<thead>
<tr>
<th>Student lab</th>
<th>Organism</th>
<th>Atmosphere</th>
<th>Gram Stain morphology</th>
<th>Additional info</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 4 quiz</td>
<td>Staphylococcus aureus</td>
<td>Faculative anaerobe</td>
<td>Gram + cocci in cl/pct</td>
<td>Catalase + Coagulase + Beta hemolytic</td>
</tr>
</tbody>
</table>