Sexually Transmitted Diseases

Genitourinary Core
Computer Assisted Instruction
2008

Peter C. Iwen, PhD, D(ABMM)
piwen@unmc.edu
S. James Booth, PhD
jbooth@unmc.edu
Session Composition

- 10 Stations
 - Each contains a single disease
 - Questions for review
Stations

- **Viral Diseases**
 - #1 Genital herpes
 - #2 Genital warts
 - #3 HIV infection

- **Bacterial Diseases**
 - #4 Chlamydia
 - #5 Gonorrhea
 - #6 Syphilis
 - #7 Bacterial vaginosis

- **Fungal Disease**
 - #8 Vaginal candidiasis

- **Parasitic Diseases**
 - #9 Trichomoniasis
 - #10 Crab lice infestation
Viral STDs

- Genital herpes
- Genital warts
- HIV infection
Station #1
Genital Herpes

- **Etiological agents**
 - *Herpes simplex* viruses (HSV)
 - Type 1
 - Type 2
 - Viral characteristics
 - DNA virus
 - Similar to other herpes viruses
 - Virus establishes latency in dorsal root ganglia after 1° infection
 - Reactivation of infection may occur
 - Cannot be cured
 - Control for reactivation
Genital Herpes

Transmission

- Direct viral contact
 - Genital secretions
 - During active infection
- About 25% of general population is sero-positive
Genital Herpes

Clinical features

- **1° infection**
 - Genital tract vesicular lesion
 - Fever and lymphadenopathy

- **Recurrent infection**
 - **Frequency**
 - Varies
 - Range from 0 to 12 or more infections yearly
 - Milder symptoms
 - Shorter duration of lesion healing
Genital Herpes

Laboratory diagnosis

- Specimen source
 - Lesion scrapping
 - Vesicular fluid
- Test methods
 - Direct exam or
 - Culture
 - Both are confirmatory tests

- **Direct exam**
 - Fluorescent antibody stain
 - Commercial stain
 - Fluorescein-labeled HSV-1 or HSV-2 antibody
 - Confirmatory

Apple-green fluorescent HSV infected cells,
Original magnification (OM) 400x
Genital Herpes

- **Culture**
 - Conventional tissue cell culture
 - Characteristic CPE produced
 - Cells round and subsequently detach from tube
 - Fluorescent stain of cells
 - To identify viral species
 - Confirmatory

CPE = cytopathic effects

Normal tissue culture cells, **OM 400x**

Viral CPE suggesting herpes, **OM 400x**
Genital Herpes

Unique facts

- *Herpes simplex* viruses
 - Also associated with oral cold sores
 - Both Type 1 and Type 2 HSV can be associated with oral and genital herpes
- Herpes infection is highly contagious
 - When active lesions are present
- Herpes infection is controlled but not cured
Which immunological test is commonly used on direct smears to identify *Herpes simplex* virus and to distinguish Type 1 from Type 2-caused disease?

- Fluorescent antibody test
 - Use commercially-available fluorescein-labeled HSV-1 and HSV-2 antibody
 - Considered confirmatory
Station #2
Genital Warts

- **Etiological agent**
 - Human papillomavirus (HPV)

- **Two main types of HPV**
 - **Cutaneous type**
 - Most associated with warts on….
 - Feet
 - Hands
 - Arms
 - Head
 - **Mucosa type**
 - Affect anogenital epithelium
 - > 40 mucosa types known
 - Some associated with epithelial cancers
 - Types 16, 18, 45, 56, 58, 59, & 68
 - Called high risk types
Genital Warts

Transmission
- Direct contact
 - Through sexual exposure

- Genital warts......
 - The most common viral sexually transmitted disease in the US
 - Specific numbers unknown
 - Not a nationally reportable disease
Genital Warts

Clinical features

– Called condyloma acuminatum
– Affects anogenital tract epithelium usually
 • May also affect upper respiratory tract
– Hyperkeratotic lesions of 2 types
 • Flat
 • Attached
 – By a broad stalk-like peduncle
– Gender specific symptoms
 • Males
 – Located on penile shaft or perianal area
 • Females
 – Perianal area, vagina, and cervix
 – Cervical infection frequently flat and not easily detected
Genital Warts

- **Laboratory diagnosis**
 - HPV cannot be grown in cell culture

 - Colposcopic exam
 - Macroscopic appearance of warts are diagnostic
 - However, a majority of genital HPV infections are the flat type
 - Not visible to the unaided eye
 - Usually found in the cervix

 - Specimens
 - Exfoliated cell samples
 - From PAP smear in females
 - Tissue biopsy
Genital Warts

- **Laboratory diagnosis**
 - Direct exam
 - Cell scrapping or biopsy
 - Biopsy
 - **Koilocytes** in tissue
 - Characterized by...
 - Peri-nuclear clearing
 - Increase in density of surrounding rim of cytoplasm

Cervical bx, H & E, OM 400x
Genital Warts

- **Cell scrapping**
 - Papanicolaou (PAP) smear
 - Images of cervical specimen using the PAP smear (OM 100x)

- **HPV Typing:** Can be done using nucleic acid probes directed against specific viral types. Not currently routine

- **Normal**
 - Low grade squamous epithelial lesions with no dysplasia
 - Characteristic of HPV infection

- **Moderate dysplasia**
 - Cervical carcinoma
Genital Warts

Unique facts

- Given the role specific HPV types play in pathogenesis of cervical cancer
 - It is likely that typing will some day become standard of care to predict risk of cancer
- A HPV vaccine is now available
 - Recommend to begin immunization of females at age 11-12 years
Station #2
Questions

- Which characteristic cell type is observed in tissue infected with the HPV?
 - Koilocytes

- End Station #2
Station #3
HIV Infection

- Etiological agent
 - Human immunodeficiency virus
 - Types 1 and 2
 - HIV-1
 - HIV-2
 - Classified as a Retrovirus
HIV Infection

Transmission
- Sexual intercourse
- Connately from mother to child
- Postnatally by breast feeding to child
- Parenteral inoculation
 - IV drug abuser

- Most frequent route of transmission
 - Vaginal infection of women by unprotected sexual intercourse
HIV Infection

Clinical features
- CD4 T lymphocytes
 - Represent the ultimate target
 - Infection culminates in…..
 - Severe immunosuppression
 - Opportunistic infections
 - Cancer
 - Ultimately leads to premature death
- Disease types
 - Symptomatic
 - Called acquired immunodeficiency syndrome (AIDS)
 - Asymptomatic
 - Called HIV infection
- Illness progresses over the course of many years
HIV Infection

- Laboratory diagnosis
 - Specimen
 - Serum
 - Diagnosis is performed by serological testing
HIV Infection

- **Laboratory diagnosis**
 - **Initial screen**
 - Enzyme linked immunosorbent assay (ELISA)
 - To detect HIV antibody in serum
 - Inexpensive test
 - Automated test for large volume screening
 - False-positive results possible
 - Requires confirmation testing
HIV Infection

- **Laboratory diagnosis**
 - **Confirmation test**
 - Western blot assay
 - Utilizes commercially prepared paper strips containing HIV protein antigens
 - Proteins have been electrophoresed and separated by size
 - **Test procedure**
 - Place patient’s serum over the strip
 - **Specific** antibodies if present will react with **specific** proteins on strip
 - Reactions are visualized as “bands”
 - **Interpretation**
 - Presence of two or more bands of major proteins are diagnostic for HIV infection
 - Major proteins include: gp120, gp160, p41, and p24
HIV Infection

Western blot assay examples

Each strip represents one patient....protein size is indicated on the left.

- Patient’s 1, 4, 9 & 11 have HIV infection
- Patient’s 3 & 8 are negative
- Patient’s 2 and 5 are indeterminate (require repeat testing after waiting for 3-4 weeks)
HIV Infection

Interesting facts

- Disease diagnosis most frequently done by observing an IgG immune response
- Several companies offer kits that can detect both specific antibodies and antigens
 - Many “over the counter” test kits are available to the general public
- AIDS is the 4th most common reportable disease in the U.S.
 - 2005 totals (top 5)
 - Chlamydia 976,445 cases
 - Gonorrhea 339,593
 - Salmonellosis 45,322
 - AIDS 41,120
 - Syphilis 33,278

(CDC, MMWR, Vol 54, March 30, 2007)
Station #3
Questions

• **How is an HIV infection confirmed?**
 – Screen for IgG antibodies to HIV
 – Confirm screen-positive results

• **Name the common tests used for screening and confirmation.**
 – Screening = ELISA test
 – Confirmation = Western blot assay

• **End Station #3**
Bacterial STDs

- Chlamydia
- Gonorrhea
- Syphilis
- Bacterial vaginosis
Station #4
Chlamydia

- **Etiological agent**
 - *Chlamydia trachomatis*
 - Small intracellular bacterium
 - 0.3 µ in diameter
 - Recognized as one of smallest bacterium known

- Not part of the normal flora
 - True pathogen
Chlamydia

Transmission
- Sexual exposure
- Neonate during exposure to infected birth canal

- Reportable disease
 - Most common reportable disease in U.S.
 - About 1 million new cases each year reported
 - Suspect this only represents 25% of actual cases
Clinical features

- Bacteria attach to mucosal cells
 - Urethra
 - Cervix
 - Rectum
 - Eyes
 - Oral-pharyngeal area
- Produces a nongonococcal urethritis or cervicitis
 - Males
 - Usually symptomatic
 - Females
 - Usually asymptomatic
- Clinical features identical to gonorrhea
Chlamydia

- **Laboratory diagnosis**
 - Specimen sources
 - Urethral swab
 - Males
 - Cervical swab
 - Urine
 - Both females and males
 - Becoming more common because of the noninvasive collection procedure
 - Other sources
 - Throat
 - Rectum
 - Eye
 - **Direct exam**
 - Not commonly done
 - Bacteria not observed on Gram stain
Chlamydia

Laboratory diagnosis
- **Culture**
 - Difficult
 - Requires cell culture
 - *C. trachomatis* acts like a virus
 - Will only grow *in vitro* in living cells
 - Not on standard bacteriological media
 - Required for unusual specimens
 - Throat, rectum, and eye
 - Non-culture methods only FDA approved for ...
 - Cervix
 - Urethra
 - Urine
 - Confirmed in cell culture by FA staining using specific antibody
 - Detect chlamydial inclusions

FA stained cell culture

OM 100x

↑

Chlamydial inclusion

OM 400x
Chlamydia

- **Laboratory diagnosis**
 - Non-culture tests
 - Mainstay of diagnosis
 - PCR-based automated tests
 - Useful for high volume testing
 - Approved for....
 - Urethral
 - Cervical
 - Urine specimens
 - Highly sensitive (>95%)
 - <5% false negatives
 - Highly specific (<99%)
 - <1% false positives
 - Dual testing common
 - Detect for both chlamydia and gonorrhea at same time
Chlamydia

- **Facts**
 - *Chlamydia trachomatis* is a bacterium with viral characteristics
 - Similarities to virus
 - Obligate intracellular parasite
 - Requires living cells to grow *in vitro*
 - Small size
 - Differences from virus
 - Contain both DNA and RNA
 - Can treat infections with antibacterial agents
Station #4
Questions

• When is culture to diagnose chlamydia most appropriate?
 – To evaluate throat, eye, and rectal specimens

• How common is chlamydia in the U.S.?
 – Most common reportable disease

• End Station #4
Station #5
Gonorrhea

- **Etiological agent**
 - *Neisseria gonorrhoeae*
 - Gram negative coccobacillus
 - Not part of normal flora
 - True pathogen

Gram stain from culture,
OM 1000x
Gonorrhea

Transmission

- Sexual exposure
- Neonate in eyes during birth

- Reported by CDC as 2nd most common reportable disease in U.S.

 - About 400,000 cases reported per year
 - May represent less than half of the actual cases
Gonorrhea

Clinical features
- Identical to chlamydia
- Males
 - Symptomatic with urethritis
- Females
 - Asymptomatic with cervicitis
Gonorrhea

Laboratory diagnosis

- Specimen
 - Urethral swab
 - Male
 - Cervical swab
 - Female
 - Urine
 - Female and male
 - Other specimens
 - Throat
 - Rectum
 - Eye

(Similar to chlamydia)
Gonorrhea

Laboratory diagnosis

- Direct exam
 - Unlike chlamydia, direct Gram stain is useful
 - Gram-negative intracellular diplococci
 - Pyogenic infection (PUS)
 - Diagnostic in males
 - Presumptive in females

Urethral exudate, Gram stain, OM 1000x
Gonorrhea

- Laboratory diagnosis
 - Culture
 - Fastidious organism
 - Requires direct plating of specimen to medium after collection
 - Sensitive to cooling
 - Keep plate and specimen at room temperature
 - Sensitive to atmospheric changes
 - CO₂-enriched environment during transport
 - Candle jar is a useful method
 - Requires enriched medium to grow in vitro
 - Chocolate agar
 - Contains enrichments needed for growth
 - Selective medium
 - Useful to detect *N. gonorrhoeae* from specimens contaminated with normal flora
 - Medium contains antimicrobial agents
 - Example is Modified Thayer Martin agar
 - Chocolate agar base
 - Contains vancomycin (inhibit gram-positive bacteria), colistin (inhibit gram-negative bacteria), and nystatin (inhibit yeast)
Gonorrhea

- Laboratory diagnosis
 - Identification from culture
 - Requirement for fastidious growth
 - Growth only on chocolate agar
 - Growth only in the presence of a CO₂ enhanced atmosphere
 - Carbohydrate acidification
 - Biochemical tests
 - Observe for the ability to ferment a pattern of sugars
 - Classic method for culture ID
Gonorrhea

- Laboratory diagnosis
 - Non-culture tests
 - Test in combination with chlamydia detection
 - PCR-based assays
 - The mainstay of diagnosis
 - Confirmatory
Gonorrhea

- **Interesting facts**
 - Nucleic acid amplification tests (NAATs)
 - Are the mainstay of diagnosis
 - NAATs can be performed on urine
 - Eliminates “invasive” procedures necessary for specimen collection
 - More people will consider getting tested
Station #5
Questions

- *Neisseria gonorrhoea* is a fastidious bacterium that is sensitive to which environmental conditions?
 - Cooling and atmospheric air

- Describe the classic Gram stain picture of gonorrhea.
 - Gram-negative intracellular diplococci
 - Many white blood cells (PMNs)

- End Station #5
Station #6
Syphilis

- Etiological agent
 - *Treponema pallidum*
 - Spirochete
 - Up to 20 µ in length
 - Obligate parasites of humans
 - No known animal or environmental reservoirs
 - True pathogen

Darkfield, Wet prep
OM 400x
Syphilis

Transmission
- Sexual intercourse
 - Direct contact with active lesions
- Transplacental
 - Infected mother to fetus
Syphilis

Clinical features

- Wide variety of clinical manifestations

- 1° syphilis
 - At site of infection
 - Lesion characterized by…
 - Ulceration
 - Generally painless
 - Lesions called chancres
Syphilis

Clinical features

- 2° syphilis
 - Disseminated infection
 - Six weeks to 6 months after 1° disease
 - Multiple papular lesions
 - Palms of hands
 - Soles of feet
 - Other locations
 - Patchy hair loss common
Syphilis

Clinical features

- Latent syphilis
 - Interval between or following episodes of 1° and 2° syphilis
 - About 75% of persons untreated will remain in this stage for life
- Tertiary syphilis
 - Occurs in about 25% of untreated cases
 - Characterized by chronic inflammatory granulomas
 - Called gumma
 - Affects...
 - Central nervous system
 - Aortic valve
 - Thoracic aorta
 - Skin
 - Bone
Syphilis

Laboratory diagnosis

- Specimen
 - 1° syphilis
 - Aspirate from chancre
 - 2° and tertiary syphilis
 - Serum to detect a serological response
Syphilis

- **Laboratory diagnosis**
 - **Direct detection**
 - 1° syphilis
 - Dark-field microscopic exam
 - Spirochete in lesion aspirate

Dark-field exam, chancre, OM 1000x
Syphilis

- **Laboratory diagnosis**
 - **Culture**
 - Organism cannot be cultured *in vitro*
 - **Sero logical**
 - To diagnose
 - Test for immunological response to infection
 - Usually involved 2nd or latent syphilis
 - Two methods used
 - Screen
 - Using a non-treponemal test
 - Some false positive results occur
 - Confirm
 - Using a more specific treponemal test
Syphilis

- Laboratory diagnosis
 - Non-treponemal screen
 - Measure antibody directed against a non-specific antigen
 - Antigens called reagin
 - Highly sensitive
 - But low specificity
 - False positive results common
 - Require positive results to be confirmed
 - Test methods used
 - Venereal Disease Research Laboratory (VDRL) test
 - Rapid Plasma Reagin (RPR) test
 - ELISA test
Syphilis

- **Laboratory diagnosis**
 - Treponemal tests
 - To confirm screen positive results
 - Detect anti-treponemal antibody
 - Highly specific
 - Most common test
 - Fluorescent-treponemal antibody-absorption (FTA-ABS) test
 - Performed by overlaying slide containing commercially obtained *T. pallidum* with serum from patient
 - Subsequently stain with fluorescent-labeled antihuman reagent

FA, Shows fluorescing spirochetes to indicate specific antibody is present OM 400x
Interesting facts

- Syphilis is one of most common STDs in the U.S.
 - Over 30,000 new cases each year
- Diagnosis is usually by a serological test
 - To detect an antibody response.
- *T. pallidum* cannot be cultured *in vitro*
Screen for syphilis is done using which test method?
- VDRL, EIA, or RPR test

Why is confirmation testing required?
- Screening tests detect a non-specific antibody associated with syphilis and thus may be a false-positive result

Which test is used to confirm a screen positive result?
- FTA-ABS test

End Station #6
Station #7
Bacterial Vaginosis

- **Etiological agents**
 - *Gardnerella vaginalis*
 - Coryneform gram-positive rod
 - Various anaerobes

- Unknown how these bacteria interact to produce infection
 - Decrease in normal flora vaginal *Lactobacillus* one possibility
- Organisms considered normal vaginal flora
 - But for not completely understood reasons overgrow in individuals with BV
Bacterial Vaginosis

Transmission

- BV is an endogenous infection in females

- *G. vaginosis* may be recovered from urethra of males
 - Disease association is however questionable
Bacterial Vaginosis

Clinical features

- Inflammatory response
 - Production of a discharge with pungent fishy odor

Cervix covered by frothy discharge
Bacterial Vaginosis

- **Laboratory diagnosis**
 - Specimen
 - Vaginal secretions
 - Direct detection
 - Visualization of “clue cells”
 - Squamous epithelial cells peppered with *G. vaginalis*

Vaginal secretion wet mount, OM 400x; Clue cells present
Bacterial Vaginosis

Laboratory diagnosis

- **Culture**
 - Not useful for diagnosis

Clinical diagnosis

- Vaginal secretions
 - pH > 4.5
 - Fishy amine odor following application of 10% KOH
 - Presence of “clue cells”
Bacterial Vaginosis

Interesting facts
- The gold standard for the diagnosis of BV
 - Direct examination of vaginal secretions
 - Culture not useful
 - *G. vaginalis* can be also be recovered from healthy females
Station #7

Questions

- Describe the major cell type observed in the vaginal secretions of women with BV?
 - Clue cells
 - Squamous epithelial cells with characteristic stripping caused by adherent *G. vaginalis*

- End Station #7
Fungal STD

- Vaginal candidiasis
Station #8
Vaginal Candidiasis

- **Etiological agent**
 - *Candida albicans*
 - Other *Candida* species may also be involved
 - Characterized as a yeast fungus
 - Present as normal flora
 - Overgrow during disruption of normal bacterial flora
 - Antibiotic usage
 - Pregnancy
 - Immune deficiency
 - Endocrine disturbance
Vaginal Candidiasis

Transmission

- **Endogenous**
 - From normal flora

- Transmission to male
 - Not common
 - May lead to urethritis or balanitis (inflammation of the penis)
Vaginal Candidiasis

- Clinical features
 - Thick milky vaginal discharge
 - Inflammation
 - Disease also called *vaginal thrush*
Vaginal Candidiasis

- **Laboratory diagnosis**
 - Specimen source
 - Vaginal secretions
 - Direct exam
 - Wet preparation or Gram stain
 - Budding yeast
 - Pseudohyphae (characteristic of *Candida* species)

Wet preparation, budding yeast mixed with squamous epithelial cells, OM 400x
Vaginal Candidiasis

- **Laboratory diagnosis**
 - Direct exam
 - Gram stain
 - Budding yeast with pseudohyphae

Gram stain, OM 400x
Vaginal Candidiasis

- **Laboratory diagnosis**
 - Culture
 - Sabouraud dextrose agar
 - Classic fungal media
 - Not generally necessary for diagnosis

SAB agar culture, OM 10x
Vaginal Candidiasis

- **Interesting facts**
 - *Candida albicans* is the most common cause of candidiasis
 - >85% of cases
 - Yeast infections are most frequently diagnosed by direct exam
 - Culture is time consuming and not necessary for patient management
Which unique characteristic identifies *Candida* species in clinical specimens?
- Presence of pseudohyphae within the budding cells

End Station #8
Parasitic STDs

- Trichomoniasis
- Crab lice infestation
Station #9
Trichomoniasis

- **Etiological agent**
 - *Trichomonas vaginalis*
 - Classified as a protozoal parasite
 - In contrast, the helminths are the true worms
 - Not normal flora
Trichomoniasis

Transmission
 - Direct contact to infected individual
 - Males
 - Most frequently asymptomatic
 - May however develop prostatitis
Trichomoniasis

- **Clinical features**
 - Not a reportable disease
 - Estimated that over 5 million females may be infected
 - Characteristics
 - Vaginal discharge
 - Described as greenish, frothy, and foul smelling
 - Intense vaginal and vulvar pruritus
Trichomoniasis

- **Laboratory diagnosis**
 - Differentiate from candidiasis and bacterial vaginosis
 - Patient management very different
 - **Direct exam**
 - Wet preparation
 - Vaginal and urethral discharge
Trichomoniasis

- **Direct exam**
 - Examine immediately after collection
 - Actively motile organism with movement of an undulating membrane

T. vaginalis → OM 100x
Trichomoniasis

- Laboratory diagnosis
 - Direct detection of the protozoan

Giemsa stain, trophozoite (name of the adult)
Trichomoniasis

Interesting facts

- *T. vaginalis* is one of the few parasites that can be cultured *in vitro*
 - Culture however, is not cost effective for patient care
 - Direct detection is reliable and simple

- “Trich” is frequently diagnosed on-site after collection
 - Rarely are samples submitted to the laboratory for testing

- *T. vaginalis* does not produce a cyst form
 - Only a trophozoite
Which structure of *Trichomonas vaginalis* is detected in genital secretions from an infected individual?

- Trophozoite form

End Station #9
Station #10
Crab Lice Infestation

- Etiological agent
 - *Phthirus pubis*
 - Referred to as the crab louse

- Classified as an arthropod “of the annoying” type
 - In contrast to those associated with disease transmission (vectors)
Crab Lice Infestation

Transmission
- Direct sexual contact with infected individual
- Males and females
 - Equally affected
Crab Lice Infestation

Clinical features

- Lice require blood for survival
 - When feeding an unexplained dermatitis occurs in the genital tract
 - Due to repeated feeding and chronic exposure to louse excreta
Crab Lice Infestation

- Laboratory diagnosis
 - Specimen
 - Pubic hair
 - Direct exam
 - Nits on the hair shaft
 - Known as larval eggs
Crab Lice Infestation

- **Laboratory diagnosis**
 - Adults
 - May be observed
 - on the skin
 - on cloths or
 - in the bed
 - Nits
 - On the hair
Crab Lice Infestation

- **Comparison**
 - Head lice
 - Body lice
 - Crab lice
- **All three lice are body site restricted**

Pediculus humanus var. capitis, head lice
Crab Lice Infestation

Interesting fact

- Lice infestation can occur by …..
 - Sharing infested clothing,
 - Exposure to infested bedding, or
 - By direct contact
Name the three species of lice associated with lice infestation.

- Body louse, *Pediculus humanus var corporis*
- Head louse, *Pediculus humanus var capitis*
- Crab louse, *Phthirius pubis*

End Station #10
Conclusion

- This completes the computer-assisted instruction for the sexually transmitted diseases.

- For questions or comments about this educational experience please e-mail
 - Dr. Peter Iwen piwen@unmc.edu or
 - Dr. James Booth jbooth@unmc.edu