Sexually Transmitted Diseases

Genitourinary Core
Computer Assisted Instruction
2007

Peter C. Iwen, PhD
piwen@unmc.edu
S. James Booth, PhD
jbooth@unmc.edu
Session Composition

- 10 Stations
 - Each contains a single disease
 - Questions for review
Stations

- **Viral Diseases**
 - #1 Genital herpes
 - #2 Genital warts
 - #3 HIV infection

- **Bacterial Diseases**
 - #4 Chlamydia
 - #5 Gonorrhea
 - #6 Syphilis
 - #7 Bacterial vaginosis

- **Fungal Disease**
 - #8 Vaginal candidiasis

- **Parasitic Diseases**
 - #9 Trichomoniasis
 - #10 Crab lice infestation
Viral STDs

- Genital herpes
- Genital warts
- HIV infection
Station #1
Genital Herpes

- Etiological agents
 - *Herpes simplex* viruses (HSV)
 - Type 1 and Type 2
 - DNA virus related to other herpes viruses
 - After infection, virus establishes latency in dorsal root ganglia
 - Reactivation may occur
 - Can be controlled but not cured
Genital Herpes

Transmission

- Direct contact with virus
 - Genital secretions
 - During active infection
 - About 25% of general population is sero-positive
Genital Herpes

Clinical features

- Primary infection
 - Vesicular lesion in genital tract
 - Fever and lymphadenopathy

- Recurrent infection
 - Frequency varies
 - Range from 0 to 12 or more infections per year
 - Generally milder symptoms and shorter duration of lesion healing
Genital Herpes

Laboratory diagnosis

- Specimen source
 - Lesion scrapping
 - Vesicular fluid
- Test methods
 - Direct exam or
 - Culture
 - Both are confirmatory tests

- Direct exam
 - Fluorescent antibody stain
 - Use fluorescein-labeled HSV-1 or HSV-2 antibody
 - Confirmatory test

Apple-green fluorescent HSV infected cells, 400x
Genital Herpes

– Culture
 ● Conventional tissue cell culture
 ● Characteristic CPE present
 – Cells round and subsequently detach from tube
 – Fluorescent staining of cells necessary to identify virus
 ● Confirmatory test

Normal tissue culture cells, 400x

Viral CPE suggesting herpes, 400x
Genital Herpes

Unique facts to consider

- *Herpes simplex* viruses are also associated with oral cold sores
- Herpes infection is extremely contagious in individuals with active lesions
- Herpes infection is controlled but not cured
Station #1

Question

- Which immunological test is commonly used on direct smears to identify *Herpes simplex* virus and to distinguish Type 1 from Type 2-caused disease?
 - Fluorescent antibody test
 - Use fluorescein-labeled HSC-1 and HSV-2 antibody
 - Considered a confirmatory test

- End Station #1
Genital Warts

- **Etiological agent**
 - Human papillomavirus (HPV)

- HPV is divided into two main types
 - **Cutaneous type**
 - Associated with warts on feet, hands, arms, and head
 - **Mucosa type**
 - Affect anogenital epithelium
 - > 40 mucosa types known
 - Some associated with epithelial cancers
 - Types 16, 18, 45, 56, 58, 59, & 68
 - Called high risk types
Genital Warts

Transmission

- Direct contact with virus
 - Through sexual exposure

- Genital warts is the most common viral sexually transmitted disease in US
 - Specific numbers unknown
 - Not a nationally reportable disease
Genital Warts

Clinical features

- Also called *condyloma acuminatum*
- Affects anogenital tract epithelium usually
 - May also affect upper respiratory tract
- Hyperkeratotic lesions of 2 types
 - Flat
 - Attached
 - By a broad stalk-like peduncle
- Gender specific symptoms
 - Males
 - Located on penile shaft or perianal area
 - Females
 - Perianal area, vagina, and cervix
 - Cervical infection frequently flat and not easily detected
Genital Warts

- **Laboratory diagnosis**
 - HPV cannot be grown in cell culture

- **Colposcopic exam**
 - The macroscopic appearance of warts are diagnostic
 - However, majority of genital HPV infections are the flat type
 - Not visible to the unaided eye
 - Usually found in the cervix

- **Specimens**
 - Exfoliated cell samples
 - From PAP smear in females
 - Tissue biopsy
Genital Warts

Laboratory diagnosis

- Direct exam
 - Cell scrapping or biopsy

- Biopsy
 - Koilocytes in tissue
 - Perinuclear clearing
 - Increase in density of surrounding rim of cytoplasm

Cervical bx, H & E, 400x
Genital Warts

- Cell scrapping
 - Papanicolaou (PAP) smear
 - Below see images of cervix using the PAP smear under low power objective

Normal

Moderate dysplasia

Typing of HPV:

Can be done using nucleic acid probes directed against specific viral types. Not currently routine
Genital Warts

Unique facts to consider

- Given the role specific HPV types play in pathogenesis of cervical cancer..........it is likely that typing will some day become standard of care to predict risk of disease
- A HPV vaccine is now available and recommended to begin immunization of females at age 11-12 years old.
Station #2
Questions

- Which cell type is characteristically observed in tissue infected with the human papillomavirus?
 - Koilocytes

- End Station #2
Station #3
HIV Infection

- Etiological agent
 - Human immunodeficiency virus types 1 and 2
 - HIV-1 and HIV-2
 - Classified as a Retrovirus
HIV Infection

Transmission

– Sexual intercourse
– Connately from mother to child
– Postnatally by breast feeding
– Parenteral inoculation

– Globally, most frequent route of transmission is vaginal infection of women by unprotected sexual intercourse
HIV Infection

- Clinical features
 - CD4 T lymphocytes represent the ultimate target
 - Culminates in severe immunosuppression, opportunistic infections, cancer, and ultimately death
 - Symptomatic disease
 - Called acquired immunodeficiency syndrome (AIDS)
 - Asymptomatic disease
 - Called HIV infection
 - Illness progresses over the course of many years
HIV Infection

- **Laboratory diagnosis**
 - Specimen source
 - Serum
 - Diagnosis is performed by serological testing
HIV Infection

Laboratory diagnosis

- Initial screen
 - Enzyme linked immunosorbent assay (ELISA)
 - Performed to detect HIV antibody in serum
 - Inexpensive test and automated for large volume testing
 - False-positive results possible
 - Thus requires confirmation testing
HIV Infection

Laboratory diagnosis

- Confirmation testing
 - Western blot test
 - Utilizes commercially prepared paper strips containing HIV protein antigens
 - The proteins have been electrophoresed and separated by size
 - Patient’s serum is placed over the strip
 - Specific antibodies if present will react with specific proteins on strip
 - Reactions are visualized as “bands”
 - Two or more bands of major proteins are diagnostic for HIV infection
 - Major proteins include: gp120, gp160, p41, p24
HIV Infection

Western blot examples

Each strip represents one patient….protein size is indicated on the left.

- Patient’s 1, 4, 9 & 11 have HIV infection
- Patient’s 3 & 8 are negative
- Patient’s 2 and 5 indeterminate (require repeat testing after waiting for 3-4 weeks)
Facts to consider

- Diagnosis of infection most frequently done by observing an IgG immune response
- Several companies offer kits that can detect both antibodies and antigen
 - Many “over the counter” test kits are available to the general public
- AIDS is considered the 3rd most common reportable disease in U.S. behind chlamydia and gonorrhea

 - 2004 totals (top 5)
 - Chlamydia: 929,462 cases
 - Gonorrhea: 330,132 cases
 - AIDS: 44,108 cases
 - Salmonellosis: 42,197 cases
 - Pertussis: 25,827 cases

(CDC, MMWR, Vol 53, June 16, 2006)
Station #3

Questions

• How is testing for HIV infection performed?
 – Detect IgG antibodies to HIV by first screening and then by confirmation of screen-positive results

• Name the tests most commonly used for screening and confirmation testing.
 – Screening, ELISA test
 – Confirmation, Western blot test

• End Station #3
Bacterial STDs

- Chlamydia
- Gonorrhea
- Syphilis
- Bacterial vaginosis
Station #4
Chlamydia

- **Etiological agent**
 - *Chlamydia trachomatis*
 - Small intracellular bacterium
 - 0.3 µ in diameter
 - Recognized as one of smallest bacterium known
 - Not part of the normal flora
 - True pathogen
Chlamydia

Transmission

- Sexual exposure
- Neonate during exposure to infected birth canal

- Reported by the CDC as most common reportable disease in U.S.
 - About 1 million new cases each year reported
 - Suspect this only represents 25% of actual cases
Chlamydia

Clinical features
- Bacteria attach to mucosal cells in urethra, cervix, rectum, eyes, and oral-pharyngeal area
- Nongonococcal urethritis or cervicitis
 - Males
 - Usually symptomatic
 - Females
 - Usually asymptomatic
- Clinically identical to gonorrhea
Chlamydia

- **Laboratory diagnosis**
 - Specimen sources
 - Urethral swab
 - Males
 - Cervical swab
 - Urine
 - Both females and males
 - Becoming more common because of the noninvasive collection procedure
 - Other sources
 - Throat, rectum, eyes
 - **Direct exam**
 - Not commonly done
 - Bacteria too small to be seen on Gram stain
Chlamydia

- **Laboratory diagnosis**
 - **Culture**
 - Difficult and requires cell culture
 - *C. trachomatis* acts like a virus and will only grow *in vitro* in living cells and not on standard bacteriological media
 - Required for the “other” sources
 - Throat, rectum, and eye
 - “Non-culture methods not FDA approved for these specimens
 - Confirmed in cells by FA staining using specific antibody
 - Detect chlamydial inclusions in cells

FA stained cell cultures

100x

Chlamydial inclusion

400x
Chlamydia

- **Laboratory diagnosis**
 - **Non-culture tests**
 - Mainstay of diagnosis
 - PCR-based automated testing
 - Useful for high volume testing
 - Approved to test urethral, cervical, and urine specimens
 - Highly sensitive (>95%) and highly specific (>99%)
 - <5% false negatives (sensitivity)
 - <1% false positives (specificity)
 - Dual testing is common practice
 - Detect for both chlamydia and gonorrhea at same time
Chlamydia

Facts to consider

– *Chlamydia trachomatis* is a bacterium with viral characteristics

 • Similarities to virus
 – Obligate intracellular parasite
 – Requires living cells to grow *in vitro*
 – Small size

 • Differences from virus
 – Contain both DNA and RNA
 – Can treat infections with antibacterial agents
Station #4
Questions

- When is culture most appropriate?
 - To evaluate throat, eye, and rectal specimens

- How common is chlamydia in the US?
 - Most common reportable disease

- End Station #4
Station #5
Gonorrhea

- **Etiological agent**
 - *Neisseria gonorrhoeae*
 - Gram negative coccobacillus
 - Not part of normal flora
 - True pathogen

Gram stain from culture,
1000x
Gonorrhea

- Transmission
 - Sexual exposure
 - Neonate in eyes during birth

- Reported by CDC as 2nd most common reportable disease in U.S.
 - About 400,000 cases reported per year
 - May represent less than half of the actual cases
Gonorrhea

- Clinical features
 - Clinically identical to chlamydia
 - Males
 - Symptomatic with urethritis
 - Females
 - Asymptomatic with cervicitis
Gonorrhea

Laboratory diagnosis
 – Specimen sources
 ● Urethral swab
 – Male
 ● Cervical swab
 – Female
 ● Urine
 – Female and male
 ● Other specimens
 – Throat, rectum, eyes

(Similar to chlamydia)
Gonorrhea

Laboratory diagnosis

- Direct exam
 - Unlike chlamydia, direct Gram stain is useful
 - Gram-negative intracellular diplococci
 - Pyogenic infection (PUS)
 - Diagnostic in males
 - Presumptive in females

Urethral exudate, Gram stain, 1000x
Gonorrhea

- **Laboratory diagnosis**
 - **Culture**
 - Fastidious organism
 - Plate specimen directly to medium after collection
 - Sensitive to cooling (keep at room temperature)
 - Sensitive to the atmosphere
 - CO$_2$-enriched environment during transport
 - Candle jar is a useful method
 - **Enriched medium**
 - Chocolate agar
 - Contains enrichments needed for growth
 - **Selective medium**
 - Medium containing antimicrobial agents
 - Useful to detect *N. gonorrhoae* from specimens contaminated with normal flora
 - Modified Thayer Martin agar
 - Chocolate agar base
 - Contains vancomycin (inhibit gram-positive bacteria), colistin (inhibit gram-negative bacteria), and nystatin (inhibit yeast)
Gonorrhea

- **Laboratory diagnosis**
 - Identification from culture
 - Fastidious growth requirement
 - Will only grow on chocolate agar
 - Will only grow in the presence of CO₂ enhanced atmosphere
 - Carbohydrate acidification biochemical tests
 - Look for the organisms ability to ferment a pattern of sugars
 - Classic method for culture ID
Gonorrhea

- Laboratory diagnosis
 - Non-culture tests
 - Test in combination with chlamydia detection
 - PCR-based assays are the mainstay of diagnosis
Gonorrhea

Facts to consider

- Nucleic acid amplification tests (NAATs) are the mainstay of diagnosis
- NAATs can be performed on urine which eliminates “invasive” procedures necessary for specimen collection
Neisseria gonorrhoea is a fastidious bacterium that is sensitive to which environmental conditions?
- Cooling and atmospheric air

Describe the classic Gram stain picture of gonorrhea.
- Gram-negative intracellular diplococci
- Many white blood cells (PMNs)

End Station #5
Station #6
Syphilis

- **Etiological agent**
 - *Treponema pallidum*
 - Spirochete
 - Up to 20 µ in length
 - Obligate parasites of humans
 - No known animal or environmental reservoirs
 - True pathogen
Syphilis

- **Transmission**
 - Sexual intercourse
 - Direct contact with active lesions
 - Transplacental
 - Infected mother to fetus
Syphilis

- Clinical features
 - Exhibits a wide variety of clinical manifestations
 - Primary syphilis
 - Occur at site of infection
 - Lesion characterized by ulceration
 - Generally painless
 - Lesions called chancre
Clinical features

- Secondary syphilis
 - Disseminated infection
 - Six weeks to 6 months after primary disease
 - Multiple papular lesions
 - On palms of hands, soles of feet and other locations
 - Patchy hair loss also common
Syphilis

Clinical features

- **Latent syphilis**
 - Interval between or following episodes of primary and secondary syphilis
 - About 75% of persons untreated will remain in this stage for life

- **Tertiary syphilis**
 - Occurs in about 25% of untreated cases
 - Characterized by chronic inflammatory granulomas (gumma)
 - Affect central nervous system, aortic valve, thoracic aorta, skin, and bone
Syphilis

Laboratory diagnosis

- Specimen
 - Primary syphilis
 - Aspirate from chancre
 - Secondary and tertiary syphilis
 - Serum to detect a serological response
Syphilis

- **Laboratory diagnosis**
 - Direct detection
 - Primary syphilis
 - Dark-field microscopic exam
 - Spirochete in lesion aspirate

Dark-field exam, chancre, 1000x
Syphilis

Laboratory diagnosis
- **Culture**
 - Organism cannot be cultured *in vitro*
- **Sero logical**
 - How most cases are diagnosed
 - Test for immunological response to infection
 - Usually involved secondary or latent syphilis
 - **Screen**
 - Using a non-treponemal test
 - Some false positive results occur
 - **Confirm**
 - Using treponemal test
Syphilis

- Laboratory diagnosis
 - Non-treponemal screening tests
 - Measure an antibody directed against a non-specific antigen
 - These antigens are called reagin
 - Tests are highly sensitive but have a low specificity
 - False positive results common
 - Requires that positive results be confirmed
 - Examples of tests used
 - Venereal Disease Research Laboratory (VDRL) test
 - Rapid Plasma Reagin (RPR) test
 - Elisa Immunoassay test
Syphilis

- **Laboratory diagnosis**
 - **Treponemal tests**
 - To confirm screen positive results
 - Detect anti-treponemal antibody and therefore are highly specific
 - Most common test
 - Fluorescent-treponemal antibody-absorption (FTA-ABS) test
 - Performed by overlaying slide containing commercially obtained *T. pallidum* with serum from patient
 - Subsequently stain with fluorescent-labeled antihuman reagent

FA, Shows fluorescing spirochetes to indicate specific antibody is present
400x
Syphilis

Facts to consider

- Syphilis is one of most common STDs in the U.S.
 - Over 20,000 new cases each year
- Diagnosis almost always by a serological test to detect an antibody response.
- *T. pallidum* cannot be cultured *in vitro*
Station #6
Questions

- **Screen for syphilis is done using which test method?**
 - VDRL, EIA, or RPR test

- **Why is confirmation testing required?**
 - Screening tests only detect a non-specific antibody associated with syphilis and thus may be a false-positive result

- **Which test is used to confirm a screen positive result?**
 - FTA-ABS test

- End Station #6
Station #7
Bacterial Vaginosis

- **Etiological agents**
 - *Gardnerella vaginalis*
 - Coryneform gram-positive rod
 - Various anaerobes
 - Unknown how these bacteria interact to produce infection
 - Decrease in normal flora vaginal *Lactobacillus* important as well
 - *G. vaginalis*
 - Considered normal vaginal flora, but
 - Overgrows in individuals with BV
Bacterial Vaginosis

Transmission
- BV is endogenous infection in females
- *G. vaginosis* may be recovered from urethra of males
 - Disease association is however questionable
Bacterial Vaginosis

Clinical features

- Inflammatory response
 - The production of a discharge with pungent fishy odor

Cervix covered by frothy discharge
Bacterial Vaginosis

- **Laboratory diagnosis**
 - Specimen
 - Vaginal secretions
 - Direct detection
 - Visualization of “clue cells”
 - Squamous epithelial cells peppered with *G. vaginalis*

Vaginal secretion wet mount, 400x;
Clue cells present
Bacterial Vaginosis

- **Laboratory diagnosis**
 - **Culture**
 - Not useful for diagnosis

 - **Clinical diagnosis**
 - Vaginal secretion pH > 4.5
 - Fishy amine odor following application of 10% KOH
 - Whiff test
 - Presence of “clue cells”
Bacterial Vaginosis

Facts to consider

- The gold standard for the diagnosis of BV is direct examination of vaginal secretions
 - Not the culture of *G. vaginalis*
 - *G. vaginalis* can be also be recovered from healthy women
Describe the major cell type observed in vaginal secretions of women with BV?

- Clue cells which are squamous epithelial cells with characteristic stripping caused by adherent *G. vaginalis*.

End Station #7
Fungal STD

- Vaginal candidiasis
Station #8
Vaginal Candidiasis

● Etiological agent
 - *Candida albicans*
 - Other *Candida* species may also be involved
 - Characterized as a yeast fungus

 - Present as normal flora
 - May overgrow during disruption of normal bacterial flora
 - Antibiotic usage
 - Pregnancy
 - Immune deficiency
 - Endocrine disturbance
Vaginal Candidiasis

- **Transmission**
 - Endogenous from normal flora
 - Transmission to male may occur
 - May lead to urethritis or balanitis
 (inflammation of the penis)
Vaginal Candidiasis

- Clinical features
 - Thick milky vaginal discharge
 - Inflammation
 - Disease also called vaginal thrush
Vaginal Candidiasis

- **Laboratory diagnosis**
 - Specimen source
 - Vaginal secretions
 - Direct exam
 - Wet preparation or Gram stain
 - Look for budding yeast, usually with pseudohyphae (characteristic of *Candida* species)

Wet preparation, budding yeast mixed with squamous epithelial cells, 400x
Vaginal Candidiasis

Laboratory diagnosis

- Direct exam
 - Gram stain
 - Budding yeast with pseudohyphae

Gram stain, 400x
Vaginal Candidiasis

Laboratory diagnosis

- Culture
 - Sabouraud dextrose agar
 - A classic fungal media used for culture
 - Culture not generally necessary for diagnosis

SAB agar culture
Vaginal Candidiasis

Facts to consider

– *Candida albicans* is by far the most common cause of candidiasis (>85% of cases)

– Yeast infections are most frequently diagnosed by direct exam without culture because of the reliability of direct detection
Station #8
Questions

- Which unique characteristic identifies *Candida* species in clinical specimens?
 - Presence of pseudohyphae with budding cells

- End Station #8
Parasitic STDs

- Trichomoniasis
- Crab lice infestation
Station #9
Trichomoniasis

- **Etiological agent**
 - *Trichomonas vaginalis*
 - Classified as a protozoal parasite
 - vs the helminths which are the true worms
 - Not normal flora
Trichomoniasis

Transmission

- Direct contact to infected individual

- Males are most frequently asymptomatic
 - May however develop prostatitis
Trichomoniasis

Clinical features
- Not reportable disease
 - Estimated that over 5 million men and women may be infected
- Most recognized disease occurs in women
 - Vaginal discharge
 - Described as greenish, frothy, and foul smelling
 - Intense vaginal and vulvar pruritus
Trichomoniasis

- **Laboratory diagnosis**
 - Must be differentiated from candidiasis and bacterial vaginosis

- **Direct exam**
 - Wet preparation of vaginal and urethral discharge
Trichomoniasis

- Direct exam
 - Examine immediately after collection under reduced light
 - Actively motile organism with movement of undulating membrane

![T. vaginalis at 100x magnification](image)
Trichomoniasis

- Laboratory diagnosis
 - Direct detection of the protozoan

Giemsa stain, trophozoite (adult organism called this)
Trichomoniasis

Facts to consider

- *T. vaginalis* is one of the few parasites that can be cultured *in vitro*
 - Culture however, is not cost effective
 - Direct detection is reliable and simple

- “Trich” is frequently diagnosed on-site after collection
 - Rarely are samples submitted to the laboratory for testing

- *T. vaginalis* does not produce a cyst form
 - Only a trophozoite
Station #9
Questions

- Which structure of *Trichomonas vaginalis* is detected in genital secretions from an infected individual?
 - Trophozoite

- End Station #9
Station #10
Crab Lice Infestation

- Etiological agent
 - *Phthirus pubis*
 - Also referred to as the crab louse
 - Classified as an arthropod “of the annoying” type
 - In contrast to those associated with disease transmission (vectors)
Crab Lice Infestation

Transmission
- Direct sexual contact with infected individual
- Males and females are equally affected
Crab Lice Infestation

Clinical features

- All lice suck blood intermittently
- Produce an unexplained dermatitis in the genital tract
 - Due to repeated feeding and chronic exposure to louse excreta
Crab Lice Infestation

- **Laboratory diagnosis**
 - Specimen
 - Pubic hair
 - Direct exam
 - Nits on the hair shafts
 - Also known as larval eggs
Crab Lice Infestation

- **Laboratory diagnosis**
 - Adults may be observed
 - on the skin or
 - on cloths or in the bed
 - Nits on the hair
Crab Lice Infestation

Comparison
- Head, body, and crab lice
- All three lice body site restricted
Crab Lice Infestation

Fact to consider

- Lice infestation can occur by

 • sharing infested clothing,

 • exposure to infested bedding, or

 • by direct contact
Name the three species of lice associated with lice infestation.

- Body louse, *Pediculus humanus var corporis*
- Head louse, *Pediculus humanus var capitis*
- Crab louse, *Phthirus pubis*

End Station #10
Conclusion

- This completes the computer-assisted instruction for the sexually transmitted diseases.

- For questions or comments about this educational experience please e-mail
 - Dr. Peter Iwen piwen@unmc.edu or
 - Dr. James Booth jbooth@unmc.edu